О журнале Редакционный совет Требования к материалам для публикации Оформление библиографического списка Организация и порядок рецензирования Содержание номеров Подписка на журнал Издательство МГТУ им. Н. Э. Баумана Редакционная этика Страница главного редактора
 

Журнал «Лесной вестник / Forestry Bulletin»

К списку номеров

Название
журнала
ЛЕСНОЙ ВЕСТНИК / FORESTRY BULLETIN
ISSN/Код НЭБ 2542–1468 Дата 2023/2023
Том 27 Выпуск 3
Страницы 1–150 Всего статей 11

БИОЛОГИЧЕСКИЕ И ТЕХНОЛОГИЧЕСКИЕ АСПЕКТЫ ЛЕСНОГО ХОЗЯЙСТВА

1 СОВРЕМЕННОЕ СОСТОЯНИЕ ЛЕСОПРОМЫШЛЕННОГО КОМПЛЕКСА САХАЛИНСКОЙ ОБЛАСТИ И ПЕРСПЕКТИВЫ ЕГО РАЗВИТИЯ 5–17

УДК 334.021:630

DOI: 10.18698/2542-1468-2023-3-5-17

Шифр ВАК 4.1.6

В.В. Саханов1, С.А. Коротков2, 3, А.А. Фитчин4, Л.В. Стоноженко5, А.Д. Попова6

1АО «Государственный научный центр лесопромышленного комплекса (АО «ГНЦ ЛПК»), Россия, 105120, г. Москва, ул. Нижняя Сыромятническая, д. 5, стр. 3А

2ФГБОУ ВО «Московский государственный технический университет имени Н.Э. Баумана (национальный исследо- вательский университет), Мытищинский филиал, Россия, 141005, Московская обл., г. Мытищи, ул. 1-я Институтская, д. 1

3ГБУН «Институт лесоведения РАН» (ИЛАН РАН), Россия, 143030, Московская обл., Одинцовский р-н, с. Успенское, ул. Советская, д. 21

4ФГБУ «Рослесинфорг», Россия, 109316, Москва, Волгоградский пр-т, д. 45, стр. 1

5ФАУ ДПО «Всероссийский институт повышения квалификации руководящих работников и специалистов лесного хозяйства», Россия, 141202, Московская обл., г. Пушкино, ул. Институтская, д. 17

6ФБУ «Авиалесоохрана», Россия, 141207, Московская обл., г. Пушкино, ул. Горького, д. 20

skorotkov-71@mail.ru

Приведен анализ динамики показателей лесопромышленного комплекса Сахалинской обл. и основных факторов, влияющих на показатели эффективности лесопользования. Выявлены основные системные проблемы, сдерживающие его поступательное развитие, в числе которых низкий уровень освоения расчетной лесосеки, недостаток экономически и транспортно доступных лесных ресурсов, несовершенство структуры производства и экспорта лесопродукции, сложное финансовое положение предприятий отрасли, недостаточность кадрового обеспечения. Рассмотрены в динамике основные показатели работы лесопромышленного комплекса и причины их постоянного снижения. Даны рекомендации по динамическому развитию лесопромышленного комплекса Сахалинской обл.

Ключевые слова: лесопользование, лесные ресурсы, лесопромышленный комплекс, системные проблемы, перспективы развития

Ссылка для цитирования: Саханов В.В., Коротков С.А., Фитчин А.А., Стоноженко Л.В., Попова А.Д. Современное состояние лесопромышленного комплекса Сахалинской области и перспективы его развития // Лесной вестник / Forestry Bulletin, 2023. Т. 27. № 3. С. 5–17. DOI: 10.18698/2542-1468-2023-3-5-17

Список литературы

[1] Распоряжение Правительства РФ от 26.09.2013 № 1724-р «Об утверждении Основ государственной политики в области использования, охраны, защиты и воспроизводства лесов в Российской Федерации на период до 2030 года». URL: http://www.consultant.ru/document/cons_doc_LAW_152506/ (дата обращения 20.11.2022).

[2] Распоряжение Правительства РФ от 11.02.2021 № 312-р «Об утверждении Стратегии развития лесного комплекса Российской Федерации до 2030 года». URL: http://www.consultant.ru/document/cons_doc_LAW_377162/ (дата обращения 20.11.2022).

[3] Постановление Правительства Сахалинской области от 28.03.2011 № 99 «О Стратегии социально-экономического развития Сахалинской области на период до 2025 года». URL: https://docs.cntd.ru/document/424087324 (дата обращения 20.11.2022).

[4] Распоряжение Правительства Сахалинской области от 28.10.2011 № 759-р «Об утверждении Стратегии развития лесопромышленного комплекса Сахалинской области на период до 2020 года». URL: https:// sakhalin-gov.ru/doc/19083 (дата обращения 20.11.2022).

[5] Постановление Правительства Сахалинской области от 18.07.2013 года № 353 «Об утверждении государственной программы Сахалинской области «Развитие лесного комплекса, охотничьего хозяйства и особо охраняемых природных территорий Сахалинской области». URL: https://docs.cntd.ru/document/460161186 (дата обращения 20.11.2022).

[6] Агентство лесного и охотничьего хозяйства Сахалинской области. URL: https://les.sakhalin.gov.ru/ (дата обращения 20.11.2022).

[7] Леса Дальнего Востока / под ред. А.С. Агеенко. М.: Лесная пром-сть, 1969. 392 с.

[8] Обыдёнников В.И., Волков С.Н., Коротков С.А. Зонально-типологические основы лесного хозяйства. М.: МГУЛ, 2015. 220 с.

[9] Кабанов Н.Е. Лесная растительность советского Сахалина. Владивосток: Изд-во Горнотаежной станции Академии наук СССР, 1940. 212 с.

[10] Сабиров Р.Н. Использование лесных ресурсов Южного Сахалина в период губернаторства Карафуто (1905–1945 гг.) // Первые Краеведческие чтения: Материалы науч. конф., посвященные памяти известного ученого-историка, архивиста, доктора исторических наук А.И. Костанова (Южно-Сахалинск, 7–8 декабря 2017 г.). Южно-Сахалинск: Сахалинская областная типография, 2018. С. 143–151.

[11] Лисицын Д. Освоение под знаком огня // Лесной бюллетень, 1999. № 3. URL: http://old.forest.ru/rus/bulletin/10/2.html (дата обращения 20.11.2022).

[12] Лесной комплекс Дальнего Востока России: аналитический обзор / под ред. А.С. Шейнгауза. Владивосток; Хабаровск: Изд-во ДВО РАН, 2005. 160 с.

[13] Федеральная служба государственной статистики. URL: https://rosstat.gov.ru/ (дата обращения 20.11.2022).

[14] Территориальный орган Федеральной службы государственной статистики по Сахалинской области. URL: https://sakhalinstat.gks.ru/ (дата обращения 20.11.2022).

[15] Федеральное агентство лесного хозяйства. URL: https://rosleshoz.gov.ru/ (дата обращения 20.11.2022).

[16] Единая межведомственная информационно-статистическая система (ЕМИСС). URL: https://www.fedstat.ru/ (дата обращения 20.11.2022).

[17] Постановление Правительства Российской Федерации от 24.03.2006 № 158 «О внесении изменений в постановления Правительства Российской Федерации от 30 ноября 2001 г. № 830 и от 9 декабря 1999 г. № 1364 в отношении отдельных видов лесоматериалов необработанных». URL: http://www.consultant.ru/document/cons_doc_LAW_59222/ (дата обращения 20.11.2022).

[18] Постановление Правительства РФ от 23.12.2006 № 795 «Об утверждении ставок вывозных таможенных пошлин на товары, вывозимые с территории Российской Федерации за пределы государств — участников соглашений о Таможенном союзе, и признании утратившими силу некоторых актов Правительства Российской Федерации». URL: http://www.consultant.ru/document/cons_doc_LAW_64861/ (дата обращения 20.11.2022).

[19] Постановление Правительства РФ от 05.02.2007 № 75 «О внесении изменений в постановление Правительства Российской Федерации от 23 декабря 2006 г. № 795 в отношении отдельных видов лесоматериалов необработанных». URL: http://www.consultant.ru/document/cons_doc_LAW_65981/ (дата обращения 20.11.2022).

[20] Стоноженко Л.В., Коротков С.А., Ухов М.В. Лесные ресурсы и динамика лесопользования Сахалинской области // Интенсификация использования и воспроизводства лесов Сибири и Дальнего Востока: Материалы Всерос. науч. конф. / под ред. А.Ю. Алексеенко. Хабаровск: Изд-во ФБУ «ДальНИИЛХ», 2021. С. 78–84.

[21] Федеральная таможенная служба России. URL: https://customs.gov.ru/ (дата обращения 20.11.2022).

[22] Дальневосточное таможенное управление. URL: https://dvtu.customs.gov.ru/ (дата обращения 20.11.2022).

[23] Указ Губернатора Сахалинской области от 08.02.2019 № 7 «Об утверждении Лесного плана Сахалинской области на 2019–2028 годы». URL: https://base.garant.ru/48825788/ (дата обращения 20.11.2022).

[24] Приказ Минпромторга России от 07.06.2012 № 748 «О включении инвестиционного проекта в перечень приоритетных инвестиционных проектов в области освоения лесов». URL: http://publication.pravo.gov.ru/SignatoryAuthority/foiv255 (дата обращения 20.11.2022).

[25] Письмо Минпромторга России от 10.03.2015 № 13-1006 «Об отказе во внесении изменений в Перечень приоритетных инвестиционных проектов Российской Федерации в области освоения лесов». URL: http://publication.pravo.gov.ru/SignatoryAuthority/foiv255 (дата обращения 20.11.2022).

[26] Письмо Минпромторга России от 01.07.2015 № 20487/13 «Об отказе во внесении изменений в Перечень приоритетных инвестиционных проектов Российской Федерации в области освоения лесов». URL: http://publication.pravo.gov.ru/SignatoryAuthority/foiv255 (дата обращения 20.11.2022).

[27] Приказ Минпромторга России от 14.12.2017 № 4407 «Об исключении инвестиционного проекта из перечня приоритетных инвестиционных проектов в области освоения лесов». URL: http://www.consultant.ru/cons/cgi/online.cgi?req=doc&base=EXP&n=719918#n7EDcZTikYAQsPHk2 (дата обращения 20.11.2022).

[28] Постановление Правительства Сахалинской области от 24.12.2019 № 618 «Об утверждении Стратегии социально-экономического развития Сахалинской области на период до 2035 года». URL: https://docs.cntd.ru/document/561676850 (дата обращения 20.11.2022).

[29] Приказ Минпромторга России от 27.06.2022 № 2664. Официальный сайт Минпромторга России. URL: http://publication.pravo.gov.ru/Document/View/0001202207280032 (дата обращения 20.11.2022).

[30] Игры с Сахалинским ЛПК // Лесной комплекс, 2019. № 6 (40). С. 150–154.

[31] План мероприятий «Дорожная карта» по реализации на территории Сахалинской области эксперимента по установлению специального регулирования в целях создания необходимых условий для внедрения технологий, направленных на сокращение выбросов парниковых газов, отработки методов формирования системы верификации, учета выбросов и поглощения парниковых газов. Утвержден Заместителем Председателя Правительства Российской Федерации В. Абрамченко 28 декабря 2020 г. № 12712п-П11. URL: https://economy.gov.ru/material/file/faf1abaae1e3f2be140971c9e934d0ab/

dorozhnaya_karta.pdf (дата обращения 20.11.2022).

Сведения об авторах

Саханов Виктор Владимирович — канд. экон. наук, зам. генерального директора по спецпроектам АО Государственный научный центр лесопромышленого комплекса (АО «ГНЦ ЛПК»), sakhanov@rambler.ru

Коротков Сергей Александрович — канд. биол. наук, доцент МГТУ им. Н.Э. Баумана (Мытищинский филиал), ФГБУН «Институт лесоведения РАН» (ИЛАН РАН), skorotkov-71@mail.ru

Фитчин Андрей Александрович — зам. начальника отдела аналитической обработки информации ФГБУ «Рослесинфорг», fitchin.gizelking@yandex.ru

Стоноженко Леонид Валерьевич — канд. с.-х. наук, зав. кафедрой лесоучетных работ, использования лесов и экологии ФАУ ДПО «Всероссийский институт повышения квалификации руководящих работников и специалистов лесного хозяйства», stonozhenko@mgul.ac.ru

Попова Акмарал Дулатовна — гл. специалист ФБУ «Авиалесоохрана», aigenova@aviales.ru

INDUSTRY CURRENT STATE IN SAKHALIN REGION AND ITS DEVELOPMENT PROSPECTS

V.V. Sakhanov1, S. A. Korotkov2, 3, A.A. Fitchin4, L.V. Stonozhenko5, A.D. Popova6

1SSC LPC, buil. 3A, 5, Nizhnyaya Syromyatnicheskaya st., 105120, Moscow, Russia

2BMSTU (Mytishchi branch), 1, 1st Institutskaya st., 141005, Mytishchi, Moscow reg., Russia

3Institute of Forest Science RAS, 21, Sovetskaya st., village Uspenskoe, Odintsovo district, 143030, Moscow reg., Russia

4Roslesinforg, buil. 1, 45, Volgogradskiy av., 109316, Moscow, Russia

5VIPKLH, 17, Institutskaya st., 141202, Pushkino, Moscow reg., Russia

6Avialesookhrana, 20, Gorky st., 141207, Pushkino, Moscow reg., Russia

skorotkov-71@mail.ru

The article provides an analysis of the dynamics of the Sakhalin Region’s timber industry indicators and the main factors influencing the indicators of forest management efficiency are presented. The main systemic problems that hinder the progressive development of the timber industry sector in the Sakhalin Region are revealed, including the low level of development of the estimated logging area, the lack of economical and transportable forest resources, the imperfect structure of production and export of forest products, the difficult financial situation of the industry's enterprises, and the insufficient staffing. The main performance indicators of the region's timber industry complex and the reasons for their constant decline are considered in dynamics. Recommendations on the dynamic development of the timber industry of the Sakhalin region are given.

Keywords: forest management, forest resources, timber industry complex, systemic problems, development prospects

Suggested citation: Sakhanov V.V., Korotkov S.A., Fitchin A.A., Stonozhenko L.V., Popova A.D. Sovremennoe sostoyanie lesopromyshlennogo kompleksa Sakhalinskoy oblasti i perspektivy ego razvitiya [Industry current state in Sakhalin region and its development prospects]. Lesnoy vestnik / Forestry Bulletin, 2023, vol. 27, no. 3, pp. 5–17. DOI: 10.18698/2542-1468-2023-3-5-17

References

[1] Rasporyazheniye Pravitel’stva RF ot 26.09.2013 № 1724-r «Ob utverzhdenii Osnov gosudarstvennoy politiki v oblasti ispolzovaniya, okhrany, zashchity i vosproizvodstva lesov v Rossiyskoy Federatsii na period do 2030 goda» [Decree of the Government of the Russian Federation of September 26, 2013 No. 1724-r «On approval of the Fundamentals of State Policy in the field of use, protection, protection and reproduction of forests in the Russian Federation for the period up to 2030»]. Available at: http://www.consultant.ru/document/cons_doc_LAW_152506/ (accessed 20.11.2022).

[2] Rasporyazheniye Pravitel’stva RF ot 11.02.2021 № 312-r «Ob utverzhdenii Strategii razvitiya lesnogo kompleksa Rossiyskoy Federatsii do 2030 goda» [Decree of the Government of the Russian Federation of February 11, 2021 No. 312-r «On Approval of the Strategy for the Development of the Forest Complex of the Russian Federation until 2030»]. Available at: http:// www.consultant.ru/document/cons_doc_LAW_377162/ (accessed 20.11.2022).

[3] Postanovleniye Pravitel’stva Sakhalinskoy oblasti ot 28.03.2011 № 99 «O Strategii sotsialno-ekonomicheskogo razvitiya Sakhalinskoy oblasti na period do 2025 goda» [Decree of the Government of the Sakhalin Region of March 28, 2011 No. 99 «On the Strategy for the Social and Economic Development of the Sakhalin Region for the period up to 2025»]. Available at: https://docs.cntd.ru/document/424087324 (accessed 20.11.2022).

[4] Rasporyazheniye Pravitel’stva Sakhalinskoy oblasti ot 28.10.2011 № 759-r «Ob utverzhdenii Strategii razvitiya lesopromyshlennogo kompleksa Sakhalinskoy oblasti na period do 2020 goda» [Decree of the Government of the Sakhalin Region of October 28, 2011 No. 759-r «On approval of the Strategy for the development of the timber industry complex of the Sakhalin Region for the period up to 2020»]. Available at: https://sakhalin-gov.ru/doc/19083 (accessed 20.11.2022).

[5] Postanovleniye Pravitel’stva Sakhalinskoy oblasti ot 18.07.2013 goda № 353 «Ob utverzhdenii gosudarstvennoy programmy Sakhalinskoy oblasti «Razvitiye lesnogo kompleksa, okhotnichyego khozyaystva i osobo okhranyayemykh prirodnykh territoriy Sakhalinskoy oblasti» [Decree of the Government of the Sakhalin Region of July 18, 2013 No. 353 «On Approval of the State Program of the Sakhalin Region «Development of the Forest Complex, Hunting and Specially Protected Natural Territories of the Sakhalin Region»]. Available at: https://docs.cntd.ru/document/460161186 (accessed 20.11.2022).

[6] Agentstvo lesnogo i okhotnichyego khozyaystva Sakhalinskoy oblasti [Agency for Forestry and Hunting of the Sakhalin region]. Available at: https://les.sakhalin.gov.ru/ (accessed 20.11.2022).

[7] Lesa Dal’nego Vostoka [Forests of the Far East]. Ed. A.S. Ageyenko. Moscow: Publishing House «Forest Industry», 1969, 392 p.

[8] Obydyonnikov V.I., Volkov S.N., Korotkov S.A. Zonalno-tipologicheskiye osnovy lesnogo khozyaystva [Zonal-typological foundations of forestry]. Moscow: MSFU, 2015, 220 p.

[9] Kabanov N.E. Lesnaya rastitelnost sovetskogo Sakhalina [Forest vegetation of Soviet Sakhalin]. Vladivostok: Izd-vo Gornotaezhnoy stantsii Akademii nauk SSSR, 1940, 212 p.

[10] Sabirov R. N. Ispolzovaniye lesnykh resursov Yuzhnogo Sakhalina v period gubernatorstva Karafuto (1905–1945 gg.) [The use of forest resources of South Sakhalin during the governorship of Karafuto (1905–1945)]. Pervyye Krayevedcheskiye chteniya: Materialy nauch. konf., posvyashchennye pamyati izvestnogo uchenogo-istorika, arkhivista, doktora istoricheskikh nauk A. I. Kostanova (Yuzhno-Sakhalinsk, 7–8 dekabrya 2017 g.) [First local history readings: materials of a scientific conference dedicated to the memory of the famous scientist-historian, archivist, doctor of historical sciences A.I. Kostanov (Yuzhno-Sakhalinsk, December 7–8, 2017)]. Yuzhno-Sakhalinsk: Sakhalin Regional Printing House, 2018, pp. 143–151.

[11] Lisitsyn D. Osvoyeniye pod znakom ognya [Development under the sign of fire]. Forest Bulletin, 1999, no. 3. Available at: http://old.forest.ru/rus/bulletin/10/2.html (accessed 20.11.2022).

[12] Lesnoy kompleks Dal’nego Vostoka Rossii: analiticheskiy obzor [Forest Complex of the Russian Far East: Analytical Review]. Ed. A.S. Sheyngauza. Vladivostok-Khabarovsk: Izd-vo DVO RAN, 2005, 160 p.

[13] Federal’naya sluzhba gosudarstvennoy statistiki [Federal State Statistics Service]. Available at: https://rosstat.gov.ru/ (accessed 20.11.2022).

[14] Territorial’nyy organ Federal’noy sluzhby gosudarstvennoy statistiki po Sakhalinskoy oblasti [Territorial body of the Federal State Statistics Service for the Sakhalin Region]. Available at: https://sakhalinstat.gks.ru/ (accessed 20.11.2022).

[15] Federal’noe agentstvo lesnogo khozyaystva [Federal Forestry Agency]. Available at: https://rosleshoz.gov.ru/ (accessed 20.11.2022).

[16] Yedinaya mezhvedomstvennaya informatsionno-statisticheskaya sistema (YeMISS) [Unified Interdepartmental Information and Statistical System (EMISS)]. Available at: https://www.fedstat.ru/ (accessed 20.11.2022).

[17] Postanovleniye Pravitel’stva Rossiyskoy Federatsii ot 24.03.2006 № 158 «O vnesenii izmeneniy v postanovleniya Pravitel’stva Rossiyskoy Federatsii ot 30 noyabrya 2001 g. № 830 i ot 9 dekabrya 1999 g. № 1364 v otnoshenii otdelnykh vidov lesomaterialov neobrabotannykh» [Decree of the Government of the Russian Federation No. 158 dated March 24, 2006 «On Amendments to Decrees of the Government of the Russian Federation No. 830 dated November 30, 2001 and No. 1364 dated December 9, 1999 regarding certain types of raw timber»]. Available at: http://www.consultant.ru/document/cons_doc_LAW_59222/ (accessed 20.11.2022).

[18] Postanovleniye Pravitel’stva RF ot 23.12.2006 № 795 «Ob utverzhdenii stavok vyvoznykh tamozhennykh poshlin na tovary, vyvozimyye s territorii Rossiyskoy Federatsii za predely gosudarstv — uchastnikov soglasheniy o Tamozhennom soyuze, i priznanii utrativshimi silu nekotorykh aktov Pravitel’stva Rossiyskoy Federatsii» [Decree of the Government of the Russian Federation of December 23, 2006 No. 795 «On Approving the Rates of Export Customs Duties on Goods Exported from the Territory of the Russian Federation Outside the States Parties to Customs Union Agreements and Recognizing Some Acts of the Government of the Russian Federation as Invalid»]. Available at: http://www.consultant.ru/document/

cons_doc_LAW_64861/ (accessed 20.11.2022).

[19] Postanovleniye Pravitel’stva RF ot 05.02.2007 № 75 «O vnesenii izmeneniy v postanovleniye Pravitel’stva Rossiyskoy Federatsii ot 23 dekabrya 2006 g. № 795 v otnoshenii otdelnykh vidov lesomaterialov neobrabotannykh» [Decree of the Government of the Russian Federation of 05.02.2007 No. 75 «On Amendments to the Decree of the Government of the Russian Federation of December 23, 2006 No. 795 in relation to certain types of raw timber»]. Available at: http://

www.consultant.ru/document/cons_doc_LAW_65981/ (accessed 20.11.2022).

[20] Stonozhenko L.V., Korotkov S.A., Ukhov M.V. Lesnyye resursy i dinamika lesopolzovaniya Sakhalinskoy oblasti [Forest resources and dynamics of forest management in the Sakhalin region]. Intensifikatsiya ispolzovaniya i vosproizvodstva lesov Sibiri i Dalnego Vostoka: materialy Vseros. nauch. konf. [Intensification of the use and reproduction of forests in Siberia and the Far East: Materials of Vseros. scientific conf.]. Ed. A.Yu. Alekseyenko. Khabarovsk: Publishing House «DalNIILKH», 2021, pp. 78–84.

[21] Federal’naya tamozhennaya sluzhba Rossii [Federal Customs Service of the Russian Federation]. Available at: https://customs.gov.ru/ (accessed 20.11.2022).

[22] Dal’nevostochnoe tamozhennoe upravlenie [Far Eastern Customs Administration]. Available at: https://dvtu.customs.gov.ru/ (accessed 20.11.2022).

[23] Ukaz Gubernatora Sakhalinskoy oblasti ot 08.02.2019 № 7 «Ob utverzhdenii Lesnogo plana Sakhalinskoy oblasti na 2019 – 2028 gody» [Decree of the Governor of the Sakhalin Region dated February 8, 2019 No. 7 «On Approval of the Forest Plan of the Sakhalin Region for 2019-2028»]. Available at: https://base.garant.ru/48825788/ (accessed 20.11.2022).

[24] Prikaz Minpromtorga Rossii ot 07.06.2012 № 748 «O vklyuchenii investitsionnogo proekta v perechen’ prioritetnykh investitsionnykh proektov v oblasti osvoeniya lesov» [Order of the Ministry of Industry and Trade of Russia dated June 7, 2012 No. 748 «On the inclusion of an investment project in the list of priority investment projects in the field of forest development»]. Available at: http://publication.pravo.gov.ru/SignatoryAuthority/foiv255 (accessed 20.11.2022).

[25] Pis’mo Minpromtorga Rossii ot 10.03.2015 № 13-1006 «Ob otkaze vo vnesenii izmeneniy v Perechen’ prioritetnykh investitsionnykh proektov Rossiyskoy Federatsii v oblasti osvoeniya lesov» [Letter of the Ministry of Industry and Trade of Russia No. 13-1006 dated March 10, 2015 «On the refusal to amend the List of priority investment projects of the Russian Federation in the field of forest development»]. Available at: http://publication.pravo.gov.ru/SignatoryAuthority/

foiv255 (accessed 20.11.2022).

[26] Pis’mo Minpromtorga Rossii ot 01.07.2015 № 20487/13 «Ob otkaze vo vnesenii izmeneniy v Perechen’ prioritetnykh investitsionnykh proektov Rossiyskoy Federatsii v oblasti osvoeniya lesov» [Letter of the Ministry of Industry and Trade of Russia dated July 1, 2015 No. 20487/13 «On the refusal to amend the List of priority investment projects of the Russian Federation in the field of forest development»]. Available at: http://publication.pravo.gov.ru/SignatoryAuthority/

foiv255 (accessed 20.11.2022).

[27] Prikaz Minpromtorga Rossii ot 14.12.2017 № 4407 «Ob isklyuchenii investitsionnogo proekta iz perechnya prioritetnykh investitsionnykh proektov v oblasti osvoeniya lesov» [Order of the Ministry of Industry and Trade of Russia dated December 14, 2017 No. 4407 «On the exclusion of an investment project from the list of priority investment projects in the field of forest development»]. Available at: http://www.consultant.ru/cons/cgi/online.cgi?req=doc&base=EXP&n=719918#n7EDcZTikYAQsPHk2 (accessed 20.11.2022).

[28] Postanovleniye Pravitel’stva Sakhalinskoy oblasti ot 24.12.2019 № 618 «Ob utverzhdenii Strategii sotsialno-ekonomicheskogo razvitiya Sakhalinskoy oblasti na period do 2035 goda» [Decree of the Government of the Sakhalin Region dated December 24, 2019 No. 618 «On approval of the Strategy for the socio-economic development of the Sakhalin Region for the period up to 2035»]. Available at: https://docs.cntd.ru/document/561676850 (accessed 20.11.2022).

[29] Prikaz Minpromtorga Rossii ot 27.06.2022 № 2664. Ofitsialnyy sayt Minpromtorga Rossii [Order of the Ministry of Industry and Trade of Russia dated June 27, 2022 No. 2672. Official website of the Ministry of Industry and Trade of Russia]. Available at: http://publication.pravo.gov.ru/Document/View/0001202207280032 (accessed 20.11.2022).

[30] Igry s Sakhalinskim LPK [Games with the Sakhalin TPC]. Forest Complex, 2019, no. 6 (40), pp. 150–154.

[31] Plan meropriyatiy «Dorozhnaya karta» po realizatsii na territorii Sakhalinskoy oblasti eksperimenta po ustanovleniyu spetsial’nogo regulirovaniya v tselyakh sozdaniya neobkhodimykh usloviy dlya vnedreniya tekhnologiy, napravlennykh na sokrashchenie vybrosov parnikovykh gazov, otrabotki metodov formirovaniya sistemy verifikatsii, ucheta vybrosov i pogloshcheniya parnikovykh gazov. Utverzhden Zamestitelem Predsedatelya Pravitel’stva Rossiyskoy Federatsii V. Abramchenko 28 dekabrya 2020 № 12712p-P11 [Action plan «Roadmap» for the implementation of an experiment on the establishment of special regulation in the Sakhalin Region in order to create the necessary conditions for the introduction of technologies aimed at reducing greenhouse gas emissions, working out methods for creating a verification system, accounting for emissions and removals of greenhouse gases. Approved by Deputy Prime Minister of the Russian Federation V. Abramchenko on December 28, 2020 No. 12712p-P11]. Available at: https://economy.gov.ru/material/file/faf1abaae1e3f2be140971c9e934d0ab/dorozhnaya_karta.pdf (accessed 20.11.2022).

Authors’ information

Sakhanov Viktor Vladimirovich — Cand. Sci. (Econ.), Deputy General Director for Special Projects of SSC LPC, buil. 3a, 5, Nizhnyaya Syromyatnicheskaya st., 105120, Moscow, Russia, sakhanov@rambler.ru

Korotkov Sergey Aleksandrovich — Cand. Sci. (Biology), BMSTU (Mytishchi ranch), Institute of Forest Science RAS, skorotkov-71@mail.ru

Fitchin Andrey Aleksandrovich — Deputy Head of the Department of analytical Information Processing of Roslesinforg, fitchin.gizelking@yandex.ru

Stonozhenko Leonid Valer’evich — Cand. Sci. (Agricultural), Head of the Department of forest accounting, Forest Use and Ecology, VIPKLH, stonozhenko@mgul.ac.ru

Popova Akmaral Dulatovna — Chief specialist of Avialesookhrana, aigenova@aviales.ru

2 СТРУКТУРНЫЕ ОСОБЕННОСТИ ЛЕСНЫХ ФИТОЦЕНОЗОВ ФОРМИРУЮЩИХСЯ НА СКАЛЬНИКАХ ПОСЛЕ ПОЖАРА 18–25

УДК 630.182 : 630.182 : 630.43 : 614. 841

DOI: 10.18698/2542-1468-2023-3-18-25

Шифр ВАК 4.1.6

А.В. Грязькин1, О.И. Гаврилова2, Тун Чэн1, Е.А. Семенова1

1ФГБОУ ВО «Санкт-Петербургский государственный лесотехнический университет имени С.М. Кирова», Россия, 194021,

г. Санкт-Петербург, Институтский пер, д. 5, литера У

2ФГБОУ ВО «Петрозаводский государственный университет», Россия, 185096, г. Петрозаводск, Республика Карелия, пр. Ленина, д. 33

lesovod@bk.ru

Установлено, что в зависимости от лесообразующей породы и условий произрастания, восстановление лесной экосистемы на гари растягивается на длительный период. Выявлено замедленное накопление органического вещества на скальниках, с чем и связано затянутое во времени развитие всех компонентов леса. Показано, что спустя 15 лет после пожара, на месте сгоревшего сосняка сформировались молодняки с преобладанием сосны березы и осины. Охарактеризована структура вновь сформированного фитоценоза, в котором общая численность древесных пород достигает 4,5 тыс. экз./га. Указано на преобладание подроста высотой более 2 м. Зафиксировано наличие в составе подчиненного яруса фитоценоза кустарниковых пород — рябины обыкновенной, ивы козьей, можжевельника обыкновенного, жимолости лесной и ирги круглолистной. Охарактеризован состав живого напочвенного покрова. Указано, что из 21 вида растений, встречаемость более 50 % имеют лишайники, вереск обыкновенный, политрихум можжевеловый, ожика волосистая, иван-чай и луговик извилистый.

Ключевые слова: гарь, постпирогенные сукцессии, компоненты леса, подрост, подлесок, живой напочвенный покров

Ссылка для цитирования: Грязькин А.В., Гаврилова О.И., Чэн Тун, Семенова Е.А. Структурные особенности лесных фитоценозов формирующихся на скальниках после пожара // Лесной вестник / Forestry Bulletin, 2023. Т. 27. № 3. С. 18–25. DOI: 10.18698/2542-1468-2023-3-18-25

Список литературы

[1] Буряк Л.В., Лузганов А.Г., Каленская О.П. Влияние низовых пожаров на формирование светлохвойных насаждений юга Средней Сибири. Красноярск: Изд-во СибГТУ, 2003. 195 с.

[2] Клочихин А.Н. Потенциал предварительного возобновления в сосняках и вероятные типы формирования насаждений // Экологические проблемы Севера. Архангельск: [б. и.], 2001. С. 51–58.

[3] Колесников Б.П., Санникова Н.С., Санников С.Н. Влияние низового пожара на структуру древостоя и возобновление древесных пород в сосняках черничнике и бруснично-черничном // Горение и пожары в лесу. Красноярск: Изд-во Ин-та леса и древесины СО АН СССР, 1973. С. 301–321.

[4] Мелехов И.С. Влияние пожаров на лес. М.; Л.: Изд-во и фототиполитогр. Гос. лесотехн. изд-ва, 1948. 126 с.

[5] McCarthy N., Bentsen N.S., Willoughby I., Balandier P. The state of forest vegetation management in Europe in the 21st century // Eur J. Forest Res., 2011, v. 130, pp. 7–16. DOI:10.1007/s10342-010-0429-5

[6] Nilsson U., Allen H.L. Short- and long-term effects of site preparation, fertilization and vegetation control on growth and stand development of planted loblolly pine // Forest Ecology and Management, 2003, no. 1, рp. 367–377.

[7] Phan Thi My Lan, Nguen Xuan Cuong. Stady on sam factors influencing the rate of initiation, proliferration and maturation of embryogenic tissues in Pinus merkusii Jung at de Vrise in vitro // Tap chi khoa hoc Lam Nghiep, 2014, sq 4, tr. 3491–3498.

[8] Грязькин А.В., Беляева Н.В., Кази И.А., Ефимов А.В., Сырников И.А. Особенности роста подроста сосны под пологом древостоев на сухих бедных почвах // Research Science (Banská Bystrica), 2019, № 8. С. 3–6.

[9] Лежнев Д.В., Глазунов Ю.Б., Коротков С.А., Андреев Г.А. Динамика сосняков сложных в условиях ближнего Подмосковья // Организмы, популяции и сообщества в трансформирующейся среде: Матер. XVII Междунар. науч. экол. конф., Белгород, 22–24 ноября 2022 г. / под ред. Ю.А. Присного. Белгород: Изд-во Белгородского гос. нац. исследовательского ун-та, 2022. С. 102–105.

[10] Hille M.G., den Ouden,, J. Fuel load, humus consumption and humus moisture dynamics in Central European Scots pine stands // International J. of Wildland Fire, 2005, v. 14, no. 2, pp. 153–159.

[11] Kasischke E.S., Christensen N.L., Stocks B.J. Fire, global warming, and the carbon balance of boreal forests // Ecological Applications, 1995, no. 5(2), pp. 437–451.

[12] Коновалова И.С., Коновалов Д.Ю. Эколого-ценотическая активность видов среднетаежной флоры // ИзВУЗ Лесной журнал, 2022. № 6. С. 94–106.

[13] Санников С.Н. Экология и география естественного возобновления сосны обыкновенной / под ред. С.А. Мамаева. М.: Наука, 1992. 263 с.

[14] Санников С.Н. Лесные пожары как эволюционно-экологический фактор возобновления популяций сосны в Зауралье // Горение и пожары в лесу. Красноярск: Изд-во Ин-та леса и древесины СО АН СССР, 1973. С. 236–277.

[15] Санникова Н.С. Экологическая роль пожаров в сосновых лесах // Роль экологических факторов в лесообразовательном процессе на Урале. Свердловск: Изд-во УНЦ АН СССР, 1981. С. 49–54.

[16] Буряк Л.В., Каленская О.П. Влияние пожаров на формирование насаждений Нижнего Приангарья. Пушкино: Изд-во ВНИИЛМ, 2020. 140 с.

[17] Гаврилова О.И., Колганов Е.С., Пак К.А. Оценка успешности самовозобновления сосны на гари // Лесотехнический журнал, 2020. Т. 10. № 4 (40). С. 142–149.

[18] Санникова Н.С., Санников С.Н., Кочубей А.А., Петрова И.В. Естественное возобновление сосны на гарях в лесостепи Западной Сибири // Сибирский лесной журнал, 2019. № 5. С. 22–29. DOI: 10.15372/SJFS20190503

[19] Санникова Н.С., Санников С.Н., Кочубей А.А., Петрова И.В. Естественное возобновление сосны на гарях в лесостепи Западной Сибири // Сибирский лесной журнал, 2019. № 5. С. 22–29.

[20] Kukavskaya E.A., Soja A.J., Petkov A.P., Ponomarev E.I., Ivanova G.A., Conard S.G. Fire emissions estimates in Siberia: Evaluation of uncertainties in area burned, land cover, and fuel consumption // Canadian J. of Forest Research, 2013, v. 43, no. 5, pp. 493–506. DOI: 10.1139/cjfr-2012-0367

[21] Weber M.G., Flannigan M.D. Canadian boreal forest ecosystem structure and function in a changing climate impact on fire regimes // Environmental Review, 1997, no. 5, pp. 145–166.

[22] Hannerz M.И.В., Almqvist C., Hörnfeldt R. Timing of seed dispersal in Pinus sylvestris stands in central Sweden // Silva Fennica, 2002, v. 36 (4), pp. 757–765.

[23] Le Canh Nam, Liru The Trung, Bui The Hoang, Luon Van Dung, va Pham Xuan Nguen. The forest structure and ecological characteristics of Pinus dalatensis de Ferre in Bidoup Nui Ba national Park, Lam Dong province // Tap chi khoa hoc Lam Nghiep, 2016, sq 2, tr. 4315–4325.

[24] Маслаков Е.Л. Формирование сосновых молодняков. М.: Лесная пром-сть, 1984. 168 с.

Сведения об авторах

Грязькин Анатолий Васильевич — д-р биол. наук, профессор кафедры лесоводства ФГБОУ ВО «Санкт-Петербургский государственный лесотехнический университет имени С.М. Кирова», lesovod@bk.ru

Гаврилова Ольга Ивановна — д-р с.-х. наук, профессор кафедры технологии и организации лесного комплекса ФГБОУ ВО «Петрозаводский государственный университет», ogavril@mail.ru

Чэн Тун — аспирант кафедры лесоводства ФГБОУ ВО «Санкт-Петербургский государственный лесотехнический университет имени С.М. Кирова», tongc9199@gmail.com

Семенова Екатерина Игоревна — аспирант кафедры лесоводства ФГБОУ ВО «Санкт-Петербургский государственный лесотехнический университет имени С.М. Кирова», ekaterinasemyonova@bk.ru

STRUCTURAL FEATURES OF FOREST PHYTOCOENOSIS FORMED ON ROCK PLANTS AFTER A FIRE

A.V. Gryazkin1, O.I. Gavrilova2, Tong Cheng1, E.И. Semenova1

1Saint-Petersburg State Forestry University named after S.M. Kirov, 5, letter U, Institutsky lane, 194021, St. Petersburg,

2Petrozavodsk State University, 33, Lenin av., Petrozavodsk, Republic of Karelia, Russia

lesovod@bk.ru

It has been established that, depending on the forest-forming species and growing conditions, the restoration of the forest ecosystem in the burnt area is extended for a long period. A feature of the formation of a full-fledged forest phytocenosis after the forest fire is the delayed accumulation of organic matter. This is also connected with the time-delayed development of all components of the forest. Under these conditions, 15 years after the fire, young trees with a predominance of pine and birch were formed on the site of the burnt pine forest. The undergrowth of aspen, spruce and gray alder is represented by single individuals. The total amount of undergrowth of natural origin reaches 4.5 thousand trees /ha. The undergrowth with a height of more than 2 m prevails. The undergrowth includes five types of shrub species such as mountain ash, willow, juniper, honeysuckle and juneberry. The total number of understory species is 350 trees/ha. More than 21 plant species have been identified as part of the living ground cover. The occurrence of lichens, heather, polytrichum juniperus, hairy ojica, willow-tea and meandering meadow grass is more than 50 %. Lichens, heather, lingonberry and polytrichum juniperus predominate in the protective coating. The composition of the herbage is polytrichum juniperus — 32 %, lichens — 23 %, heather — 22 %, lingonberries — 15 %, others — 8 %. The purpose of the research is to identify the features of the forest ecosystem regeneration after the forest fire after the burnt lichen pine. The object of research was a 15-year-old young forest after the forest fire in the territory of the Prionezhsky forestry of the Republic of Karelia.

Keywords: burned area, post-pyrogenic successions, forest components, young generation of trees, undergrowth, living ground cover

Suggested citation: Gryaz’kin A.V., Gavrilova O.I., Cheng Tong, Semenova E.A. Strukturnye osobennosti lesnykh fitotsenozov formiruyushchikhsya na skal’nikakh posle pozhara [Structural features of forest phytocoenosis formed on rock plants after a fire]. Lesnoy vestnik / Forestry Bulletin, 2023, vol. 27, no. 3, pp. 18–25. DOI: 10.18698/2542-1468-2023-3-18-25

References

[1] Buryak L.V., Luzganov A.G., Kalenskaya O.P. Vliyanie nizovykh pozharov na formirovanie svetlokhvoynykh nasazhdeniy yuga Sredney Sibiri [Influence of ground fires on the formation of light coniferous plantations in the south of Central Siberia]. Krasnoyarsk: SibGTU, 2003, 195 p.

[2] Klochikhin A.N. Potentsial predvaritel’nogo vozobnovleniya v sosnyakakh i veroyatnye tipy formirovaniya nasazhdeniy [Potential of preliminary regeneration in pine forests and probable types of plantation formation]. Ekologicheskie problemy Severa [Ecological problems of the North]. Arkhangelsk, 2001, pp. 51–58.

[3] Kolesnikov B.P., Sannikova N.S., Sannikov S.N. Vliyanie nizovogo pozhara na strukturu drevostoya i vozobnovlenie drevesnykh porod v sosnyakakh chernichnike i brusnichno-chernichnom [The influence of ground fire on the structure of the forest stand and the renewal of tree species in blueberry and lingonberry-bilberry pine forests]. Gorenie i pozhary v lesu [Burning and fires in the forest]. Krasnoyarsk: Institute of Forest and Wood SO AN SSSR, 1973, pp. 301–321.

[4] Melekhov I.S. Vliyanie pozharov na les [The impact of fires on the forest]. Moscow-Leningrad: Publishing house and photo-type printing press State Forest Engineering publishing house, 1948, 126 p.

[5] McCarthy N., Bentsen N.S., Willoughby I., Balandier P. The state of forest vegetation management in Europe in the 21st century. Eur J. Forest Res., 2011, v. 130, pp. 7–16. DOI:10.1007/s10342-010-0429-5

[6] Nilsson U., Allen H.L. Short- and long-term effects of site preparation, fertilization and vegetation control on growth and stand development of planted loblolly pine. Forest Ecology and Management, 2003, no. 1, pp. 367–377.

[7] Phan Thi My Lan, Nguen Xuan Cuong. Stady on sam factors influencing the rate of initiation, proliferration and maturation of embryogenic tissues in Pinus merkusii Jung at de Vrise in vitro. Tap chi khoa hoc Lam Nghiep, 2014, sq 4, tr. 3491–3498.

[8] Gryaz’kin A.V., Belyaeva N.V., Kazi I.A., Efimov A.V., Syrnikov I.A. Osobennosti rosta podrosta sosny pod pologom drevostoev na sukhikh bednykh pochvakh [Features of the growth of pine undergrowth under the canopy of forest stands on dry poor soils]. Research Science (Banská Bystrica) [Research Science (Banská Bystrica)], 2019, no. 8, pp. 3–6.

[9] Lezhnev D.V., Glazunov Yu.B., Korotkov S.A., Andreev G.A. Dinamika sosnyakov slozhnykh v usloviyakh blizhnego Podmoskov’ya [Dynamics of complex pine forests in the conditions of the near Moscow region]. Organizmy, populyatsii i soobshchestva v transformiruyushcheysya srede: mater. XVII Mezhdunarodnoy nauchnoy ekologicheskoy konferentsii, Belgorod, 22–24 noyabrya 2022 g. [Organisms, populations and communities in a transforming environment: mater. XVII International Scientific Ecological Conference, Belgorod, November 22–24, 2022]. Ed. Yu.A. Prisny. Belgorod: Belgorod State National Research University, 2022, pp. 102–105.

[10] Hille M.G., den Ouden, J. Fuel load, humus consumption and humus moisture dynamics in Central European Scots pine stands. International J. of Wildland Fire, 2005, v. 14, no. 2, pp. 153–159.

[11] Kasischke E.S., Christensen N.L., Stocks B.J. Fire, global warming, and the carbon balance of boreal forests. Ecological Applications, 1995, no. 5(2), pp. 437–451.

[12] Konovalova I.S., Konovalov D.Yu. Ekologo-tsenoticheskaya aktivnost’ vidov srednetaezhnoy flory [Ecological and cenotic activity of species of the middle taiga flora]. Lesnoy Zhurnal (Russian Forestry Journal), 2022, no. 6, pp. 94–106.

[13] Sannikov S.N. Ekologiya i geografiya estestvennogo vozobnovleniya sosny obyknovennoy [Ecology and geography of natural renewal of Scotch pine]. Ed. S.A. Mamaev. Moscow: Nauka, 1992, 263 p.

[14] Sannikov S.N. Lesnye pozhary kak evolyutsionno-ekologicheskiy faktor vozobnovleniya populyatsiy sosny v Zaural’e [Forest fires as an evolutionary-ecological factor in the renewal of pine populations in the Trans-Urals]. Gorenie i pozhary v lesu [Burning and fires in the forest]. Krasnoyarsk: Institute of Forest and Wood SO AN SSSR, 1973, pp. 236–277.

[15] Sannikova N.S. Ekologicheskaya rol’ pozharov v sosnovykh lesakh [Ecological role of fires in pine forests]. Rol’ ekologicheskikh faktorov v lesoobrazovatel’nom protsesse na Urale [The role of environmental factors in the forest formation process in the Urals]. Sverdlovsk: UNTs AN SSSR, 1981, pp. 49–54.

[16] Buryak L.V., Kalenskaya O.P. Vliyanie pozharov na formirovanie nasazhdeniy Nizhnego Priangar’ya [Influence of fires on the formation of plantations in the Lower Angara region]. Pushkino: VNIILM, 2020, 140 p.

[17] Gavrilova O.I., Kolganov E.S., Pak K.A. Otsenka uspeshnosti samovozobnovleniya sosny na gari [Evaluation of the success of self-renewal of pine trees in the burnt areas]. Lesotekhnicheskiy zhurnal [Forestry Engineering Journal], 2020, v. 10, no. 4 (40), pp. 142–149.

[18] Sannikova N.S., Sannikov S.N., Kochubey A.A., Petrova I.V. Estestvennoe vozobnovlenie sosny na garyakh v lesostepi Zapadnoy Sibiri [Natural regeneration of pine on burned areas in the forest-steppe of Western Siberia]. Sibirskiy lesnoy zhurnal [Siberian Forest Journal], 2019, no. 5, pp. 22–29. DOI: 10.15372/SJFS20190503

[19] Sannikova N.S., Sannikov S.N., Kochubey A.A., Petrova I.V. Estestvennoe vozobnovlenie sosny na garyakh v lesostepi Zapadnoy Sibiri [Natural regeneration of pine on burned areas in the forest-steppe of Western Siberia]. Sibirskiy lesnoy zhurnal [Siberian Forest Journal], 2019, no. 5, pp. 22–29

[20] Kukavskaya E.A., Soja A.J., Petkov A.P., Ponomarev E.I., Ivanova G.A., Conard S.G. Fire emissions estimates in Siberia: Evaluation of uncertainties in area burned, land cover, and fuel consumption. Canadian J. of Forest Research, 2013, v. 43, no. 5, pp. 493–506. DOI: 10.1139/cjfr-2012-0367

[21] Weber M.G., Flannigan M.D. Canadian boreal forest ecosystem structure and function in a changing climate impact on fire regimes. Environmental Review, 1997, no. 5, pp. 145–166.

[22] Hannerz M.I.V., Almqvist C., Hörnfeldt R. Timing of seed dispersal in Pinus sylvestris stands in central Sweden. Silva Fennica, 2002, v. 36 (4), pp. 757–765.

[23] Le Canh Nam, Liru The Trung, Bui The Hoang, Luon Van Dung, va Pham Xuan Nguen. The forest structure and ecological characteristics of Pinus dalatensis de Ferre in Bidoup Nui Ba national Park, Lam Dong province. Tap chi khoa hoc Lam Nghiep, 2016, sq. 2, tr. 4315–4325.

[24] Maslakov E.L. Formirovanie sosnovykh molodnyakov [Formation of young pine forests]. Moscow: Lesnaya prom-st [Forestry], 1984, 168 p.

Authors’ information

Gryaz’kin Anatoliy Vasil’evich — Dr. Sci. (Biology), Professor, Saint-Petersburg State Forest Technical University, lesovod@bk.ru

Gavrilova Ol’ga Ivanovna — Dr. Sci. (Agriculture), Professor of the Department of Technology and Organization of the Forestry Complex of PetrSU, ogavril@mail.ru.

Cheng Tong — pg. of the Department of Forestry, St. Petersburg State Forestry University named after S.M. Kirov, tongc9199@gmail.com

Semenova Ekaterina Igorevna — pg. of the Department of Forestry, St. Petersburg State Forestry University named after S.M. Kirov, ekaterinasemyonova@bk.ru

3 ВОЗОБНОВЛЕНИЕ СОСНЫ ПИЦУНДСКОЙ (PINUS BRUTIA VAR. PITYUSA (STEVEN) SILBA) НА ЗАПОВЕДНЫХ ТЕРРИТОРИЯХ ГОРНОГО КРЫМА 26–35

УДК 502.75

DOI: 10.18698/2542-1468-2023-3-26-35

Шифр ВАК 4.1.6

В.П. Коба1, А.Н. Салтыков2, Н.А. Макаров1, О.О. Коренькова1

1ФГБУН «Ордена Трудового Красного знамени Никитский ботанический сад — Национальный научный центр РАН»,

Россия, 298648, Республика Крым, г. Ялта, пгт. Никита, Никитский с-к, д. 52

2ФГАОУ ВО «Крымский федеральный университет им. В.И. Вернадского», Институт «Агротехнологическая академия»,

Россия, 295007, Республика Крым, г. Симферополь, просп. Академика Вернадского, д. 4

kobavp@mail.ru

Установлено, что подрост сосны пицундской (Pinus brutia var. pityusa (Steven) Silba) на территории горельников распределяется неравномерно, его плотность изменяется в пределах 2,9…8,2 тыс. шт./га., максимальная достигает 15 тыс. шт./га. Выделены ландшафтно-ценотические зоны динамики процессов возобновления коренных древостоев P. pityusa. Выявлено увеличение численности подроста вблизи групп и одиночных растений, которые не были ликвидированы при проведении санитарных рубок на горельниках. Возможность роста и развития подроста на данных участках определялась влиянием фитогенного поля уцелевших деревьев, обеспечивающих защиту молодых растений P. pityusa от действия негативных факторов внешней среды. Определено, что относительно равномерное снижение плотности подроста наблюдается при движении от стены материнского древостоя на расстояние, кратное 2–3 величинам его средней высоты. Представлено влияние временного разрыва в хронологии прохождения лесных пожаров на возрастную и пространственную структуру подроста P. pityusa. Общая оценка специфики возрастной структуры позволила установить, что активизация естественного возобновления и формирование ценопопуляций подроста P. pityusa происходят в течение 2–3 лет после пожара. Установлено, что антропогенное вмешательство в природные процессы возобновления коренных сообществ снижает возможности реализации биоценотических процессов поддержания целостности и восстановления лесного сообщества видами, способными к устойчивому существованию в сложившихся условиях. Показано сокращение биоценотического пространства доминирования P. pityusa определяющего формирование насаждений порослевого происхождения с преобладанием дуба пушистого (Quercus pubescens Willd.) n-генерации, что в значительной степени снижает продуктивность, устойчивость и биологическое разнообразие лесных сообществ ландшафтного заказника «Мыс Айя».

Ключевые слова: Pinus pityusa, древостои, возобновление, подрост, численность, горельники

Ссылка для цитирования: Коба В.П., Салтыков А.Н., Макаров Н.А., Коренькова О.О. Возобновление сосны пицундской (Pinus brutia var. pityusa (Steven) Silba) на заповедных территориях Горного Крыма // Лесной вестник / Forestry Bulletin, 2023. Т. 27. № 3. С. 26–35. DOI: 10.18698/2542-1468-2023-3-26-35

Список литературы

[1] Галущенко С.В., Галущенко Н.Н. Строго охраняемые природные территории как основа реальной заповедности. Международный и европейский опыт // Гуманитарный экологический журнал, 2017. Т. 3 (62). № 19. С. 1–11.

[2] Burivalova Z., Hart S.J., Radeloff V.C., Srinivasan U. Early warning sign of forest loss in protected areas // Current Biology, 2021, v. 31, iss. 20, pp. 4620–4626. DOI: 10.1016/j.cub.2021.07.072

[3] Powlen K.A., Gavin M.C., Jones K.W. Management effectiveness positively influences forest conservation outcomes in protected areas // Biological Conservation, 2021, v. 260, pp. 109192. DOI: 10.1016/j.biocon.2021.109192

[4] Ribeiro M.P., Mello K., Valente R.A. How can forest fragments support Protected Areas connectivity in an urban landscape in Brazil? // Urban Forestry & Urban Greening, 2022, pp. 127683. DOI: 10.1016/j.ufug.2022.127683

[5] Diniz M.F., Dallmeier F., Gregory T., Martinez V., Saldivar-Bellassai S., Benitez-Stanley M.A., Sánchez-Cuervo A.M. Balancing multi-species connectivity and socio-economic factors to connect protected areas in the Paraguayan Atlantic Forest // Landscape and Urban Planning, 2022, v. 222, p. 104400. DOI: 10.1016/j.landurbplan.2022.104400

[6] Liu Y., Ziegler A., Jie W., Shijing L., Dashan W., Rongrong X., Decha D., Hailong L., Zhenzhong Z. Effectiveness of protected areas in preventing forest loss in a tropical mountain region // Ecological Indicators, 2022, v. 136, p. 108697. DOI: 10.1016/j.ecolind.2022.108697

[7] Opuni-Frimpong E., Gabienu E., Adusu D., Opuni-Frimpong N.Y., Damptey F.G. Plant diversity, conservation significance, and community structure of two protected areas under different governance // Trees, Forests and People, 2021, v. 4, p. 100082.

DOI: 10.1016/j.tfp.2021.100082

[8] Silva-Pereira I., Meira-Neto J.A.A., .Rezende V.L., Eisenlohr P.V. Biogeographic transitions as a source of high biological diversity: Phylogenetic lessons from a comprehensive ecotone of South America // Perspectives in Plant Ecology, Evolution and Systematics, 2020, v. 44, p. 125528. DOI: 10.1016/j.ppees.2020.125528

[9] Ullah S.M.A., Tani M., Tsuchiya J., Rahman M.A., Moriyama M. Impact of protected areas and co-management on forest cover: A case study from Teknaf Wildlife Sanctuary, Bangladesh // Land Use Policy, 2022, v. 113, p. 105932. DOI: 10.1016/j.landusepol.2021.105932

[10] Позаченюк Е.А., Соцкова Л.М., Калинчук И.В., Шудрик Е.В. Инициатива Крымского экорегиона // Заповедники Крыма. Биоразнообразие и охрана природы в Азово-Черноморском регионе: Материалы VII Междунар. науч.-практ. конф., 24–26 октября 2013 г. Симферополь, 2013. С. 144–148.

[11] Александрова М.А. Формирование правового режима земель особо охраняемых природных территорий в отечественном праве XII–XX веков // Альманах современной науки и образования, 2014. Т. 5–6. С. 18–21.

[12] Грейг-Смит П. Количественная экология растений. М.: Мир, 1967. 358 с.

[13] Злобин Ю.А. Оценка качества ценопопуляций подроста древесных пород // Лесоведение, 1976. Т. 6. С. 72–79.

[14] Пятницкий С.С. Методика исследований естественного семенного возобновления в лесах левобережной Лесостепи Украины. Харьков: Изд-во Харьков. ун-та, 1959. 38 с.

[15] Санников С.Н., Санникова Н.С. Экология естественного возобновления сосны под пологом леса. М.: Наука, 1985. 152 с.

[16] Кучеров И.Б. О принципе дополнительности в геоботанике: методологические предпосылки возникновения комплементарных подходов к изучению растительности // Журнал общей биологии, 1995. Т. 56 (4). С. 486–505.

[17] Коба В.П. Возобновление сосны Палласа на горельниках в Горном Крыму // Лесоведение, 2016. Т. 4. С. 270–278.

[18] Коба В.П. Особенности восстановления древостоев сосны крымской в постпирогенный период // Экосистемы, 2017. Т. 11. С. 10–13.

[19] Левченко К.В., Матвеев С.М. Факторы горимости и послепожарные изменения в горных лесах Крымского заповедника // Лесотехнический журнал, 2017. Т. 4. С. 91–100.

[20] Лукина Л.И., Тохтамыш О.К., Мастепанова О.И. Противопожарное обустройство лесов в Севастопольском лесничестве // Экологическая, промышленная и энергетическая безопасность: Сб. ст. междунар. науч.-практ. конф., 23–26 сентября 2019 г. Севастополь, 2019. С. 926–930.

[21] Ежегодный доклад о состоянии и об охране окружающей среды города Севастополя за 2019 год. Севастополь, 2020. 316 с.

[22] Салтыков А.Н. Системная целостность и сходство пространственно-возрастной структуры подроста сосны обыкновенной и сосны крымской // Бюллетень Государственного Никитского ботанического сада, 2021. Т. 141. С. 44–54.

[23] Коба В.П. К проблеме воспроизводства естественных древостоев Pinus pallasiana D. Don. // Сб. науч. трудов Государственного Никитского ботанического сада, 2004. Т. 123. С. 178–186.

[24] Коба В.П. Возобновление коренных насаждений Pinus pallasiana D. Don после верховых пожаров на фоне динамики абиотических факторов в постпирогенный период // Растительные ресурсы, 2004. Т. 40(2). С. 19–30.

[25] Коба В.П., Жигалова Т.П. Влияние травоядных животных на возобновление сосны крымской в условиях пустоши горельников // Уч. зап. Таврического национального университета им. В.И. Вернадского. Серия: Биология, 2012. Т. 25 (64). № 1. С. 92–97.

Сведения об авторах

Коба Владимир Петрович — д-р биол. наук, профессор, заведующий лабораторией лесоведения ФГБУН «Ордена Трудового Красного Знамени Никитский ботанический сад — Национальный научный центр РАН», kobavp@mail.ru

Салтыков Андрей Николаевич — канд. с.-х. наук, доцент, зав. кафедрой лесного дела и садово-паркового строительства Института «Агротехнологическая академия» ФГАОУ ВО «Крымский федеральный университет им. В.И. Вернадского», saltykov.andrey.1959@mail.ru

Макаров Никита Александрович — аспирант лаборатории лесоведения ФГБУН «Ордена Трудового Красного Знамени Никитский ботанический сад — Национальный научный центр РАН», makarov.crimea@yandex.ru

Коренькова Олеся Олеговна — канд. биол. наук, науч. сотр. лаборатории лесоведения ФГБУН «Ордена Трудового Красного Знамени Никитский ботанический сад — Национальный научный центр РАН», o.o.korenkova@mail.ru

RENEWAL OF PINUS BRUTIA VAR. PITYUSA (STEVEN) SILBA IN RESERVED TERRITORIES OF MOUNTAIN CRIMEA

V.P. Koba1, A.N. Saltykov2, N.A. Makarov1, O.O. Korenkova1

1Nikita Botanical Gardens — National Scientific Center of the Russian Academy of Sciences, 52, Nikitsky s-k, 298648,

Nikita village, Yalta, Republic of Crimea, Russia

2V.I. Vernadsky Crimean Federal University, 4, Academician Vernadsky av., 295007, Simferopol, Republic of Crimea, Russia

kobavp@mail.ru

It has been established that undergrowth of Pinus brutia var. pityusa (Steven) Silba is unevenly distributed on the territory of the burnt areas, its density varies within 2,9…8,2 thousand units/ha, the maximum reaches 15 thousand units/ha. The landscape-coenotic zones of the dynamics of the processes of renewal of native P. pityusa forest stands have been identified. An increase in the number of undergrowth near groups and single plants, which were not eliminated during sanitary felling on burnt areas, was revealed. The possibility of growth and development of undergrowth in these areas was determined by the influence of the phytogenic field of surviving trees, which protect young plants of P. pityusa from negative environmental factors. It was determined that a relatively uniform decrease in the density of undergrowth is observed when moving from the wall of the parent stand at a distance that is a multiple of 2–3 values of its average height. The effect of a time gap in the chronology of the passage of forest fires on the age and spatial structure of P. pityusa undergrowth is presented. A general assessment of the specifics of the age structure made it possible to establish that the activation of natural regeneration and the formation of coenopopulations of P. pityusa undergrowth occur within 2–3 years after the fire. It has been established that anthropogenic interference in the natural processes of renewal of indigenous communities reduces the possibility of implementing biocenotic processes of maintaining the integrity and restoration of the forest community by species capable of sustainable existence under the prevailing conditions. A reduction in the biocenotic space of P. pityusa dominance, which determines the formation of stands of coppice origin, with a predominance of Quercus pubescens Willd. n-generation, which significantly reduces the productivity, sustainability and biological diversity of forest communities of the Cape Aya landscape reserve.

Keywords: P. pityusa, stands, regeneration, undergrowth, abundance, burnt forests

Suggested citation: Koba V.P., Saltykov A.N., Makarov N.A., Korenkova O.O. Vozobnovlenie sosny pitzundskoi (Pinus brutia var. pityusa (Steven) Silba) na zapovednykh territoriyakh Gornogo Kryma [Renewal of Pinus brutia var. pityusa (Steven) Silba in reserved territories of Mountain Crimea]. Lesnoy vestnik / Forestry Bulletin, 2023, vol. 27, no. 3, pp. 26–35. DOI: 10.18698/2542-1468-2023-3-26-35

References

[1] Galushchenko S.V., Galushchenko N.N. Strogo okhranyaemye prirodnye territorii kak osnova real’noy zapovednosti. Mezhdunarodnyy i evropeyskiy opyt [Strictly protected natural territories as the basis of a real reserve. International and European experience]. Gumanitarnyy ekologicheskiy zhurnal [Humanitarian ecological journal], 2017, v. 3 (62), no. 19, pp. 1–11.

[2] Burivalova Z., Hart S.J., Radeloff V.C., Srinivasan U. Early warning sign of forest loss in protected areas. Current Biology, 2021, v. 31, iss. 20, pp. 4620–4626. DOI: 10.1016/j.cub.2021.07.072

[3] Powlen K.A., Gavin M.C., Jones K.W. Management effectiveness positively influences forest conservation outcomes in protected areas. Biological Conservation, 2021, v. 260, pp. 109192. DOI: 10.1016/j.biocon.2021.109192

[4] Ribeiro M.P., Mello K., Valente R.A. How can forest fragments support Protected Areas connectivity in an urban landscape in Brazil? Urban Forestry & Urban Greening, 2022, pp. 127683. DOI: 10.1016/j.ufug.2022.127683

[5] Diniz M.F., Dallmeier F., Gregory T., Martinez V., Saldivar-Bellassai S., Benitez-Stanley M.A., Sánchez-Cuervo A.M. Balancing multi-species connectivity and socio-economic factors to connect protected areas in the Paraguayan Atlantic Forest. Landscape and Urban Planning, 2022, v. 222, p. 104400. DOI: 10.1016/j.landurbplan.2022.104400

[6] Liu Y., Ziegler A., Jie W., Shijing L., Dashan W., Rongrong X., Decha D., Hailong L., Zhenzhong Z. Effectiveness of protected areas in preventing forest loss in a tropical mountain region. Ecological Indicators, 2022, v. 136, p. 108697. DOI: 10.1016/j.ecolind.2022.108697

[7] Opuni-Frimpong E., Gabienu E., Adusu D., Opuni-Frimpong N.Y., Damptey F.G. Plant diversity, conservation significance, and community structure of two protected areas under different governance. Trees, Forests and People, 2021, v. 4, p. 100082. DOI: 10.1016/j.tfp.2021.100082

[8] Silva-Pereira I., Meira-Neto J.A.A., .Rezende V.L., Eisenlohr P.V. Biogeographic transitions as a source of high biological diversity: Phylogenetic lessons from a comprehensive ecotone of South America. Perspectives in Plant Ecology, Evolution and Systematics, 2020, v. 44, p. 125528. DOI: 10.1016/j.ppees.2020.125528

[9] Ullah S.M.A., Tani M., Tsuchiya J., Rahman M.A., Moriyama M. Impact of protected areas and co-management on forest cover: A case study from Teknaf Wildlife Sanctuary, Bangladesh. Land Use Policy, 2022, v. 113, p. 105932. DOI: 10.1016/j.landusepol.2021.105932

[10] Pozachenyuk E.A., Sotskova L.M., Kalinchuk I.V., Shudrik E.V. Initsiativa Krymskogo ekoregiona [Initiative of the Crimean Ecoregion]. Zapovedniki Kryma. Bioraznoobrazie i okhrana prirody v Azovo-Chernomorskom regione: Mat. VII Mezhdunar. nauch.-prakt. konf. [Reserves of Crimea. Biodiversity and nature protection in the Azov-Black Sea region: Mat. VII Intern. scientific-practical. Conf.], October 24–26, 2013. Simferopol, 2013, pp. 144–148.

[11] Aleksandrova M.A. Formirovanie pravovogo rezhima zemel’ osobo okhranyaemykh prirodnykh territoriy v otechestvennom prave XII–XX vekov [Formation of the legal regime of lands of specially protected natural areas in domestic law of the XII–XX centuries]. Al’manakh sovremennoy nauki i obrazovaniya [Almanac of modern science and education], 2014, v. 5–6, pp. 18–21.

[12] Greig-Smith P. Kolichestvennaya ekologiya rasteniy [Quantitative plant ecology]. Moscow: Mir, 1967, 358 p.

[13] Zlobin Yu.A. Otsenka kachestva tsenopopulyatsiy podrosta drevesnykh porod [Assessment of the quality of cenopopulations of undergrowth of tree species]. Lesovedenie, 1976, v. 6, pp. 72–79.

[14] Pyatnitskiy S.S. Metodika issledovaniy estestvennogo semennogo vozobnovleniya v lesakh levoberezhnoy Lesostepi Ukrainy [Methodology for researching natural seed regeneration in the forests of the left-bank Forest-Steppe of Ukraine]. Kharkov: Kharkov Publishing House university, 1959, 38 p.

[15] Sannikov S.N., Sannikova N.S. Ekologiya estestvennogo vozobnovleniya sosny pod pologom lesa [Ecology of natural regeneration of pine under the forest canopy]. Moscow: Nauka, 1985, 152 p.

[16] Kucherov I.B. O printsipe dopolnitel’nosti v geobotanike: metodologicheskie predposylki vozniknoveniya komplementarnykh podkhodov k izucheniyu rastitel’nosti [On the principle of complementarity in geobotany: methodological prerequisites for the emergence of complementary approaches to the study of vegetation]. Zhurnal obshchey biologii [Journal of General Biology], 1995, v. 56 (4), pp. 486–505.

[17] Koba V.P. Vozobnovlenie sosny Pallasa na gorel’nikah v Gornom Krymu [Renewal of Pallas pine on burnt forests in the Mountainous Crimea]. Russian Journal of Forest Science [Lesovedenie], 2016, v. 4, pp. 270–278.

[18] Koba V.P. Osobennosti vosstanovleniya drevostoev sosny krymskoy v postpirogennyy period [Peculiarities of restoring stands of Crimean pine in the post-pyrogenic period]. Ekosistemy [Ecosystems], 2017, v. 11, pp. 10–13.

[19] Levchenko K.V., Matveev S.M. Faktory gorimosti i poslepozharnye izmeneniya v gornykh lesakh Krymskogo zapovednika [Flammability factors and post-fire changes in the mountain forests of the Crimean Reserve]. Lesotekhnicheskiy zhurnal [Forestry Engineering Journal], 2017, v. 4, pp. 91–100.

[20] Lukina L.I., Tokhtamysh O.K., Mastepanova O.I. Protivopozharnoe obustroystvo lesov v Sevastopol’skom lesnichestve [Fire-fighting arrangement of forests in the Sevastopol forestry]. Ekologicheskaya, promyshlennaya i energeticheskaya bezopasnost’ [Ecological, industrial and energy safety], 2019, pp. 926–930.

[21] Ezhegodnyy doklad o sostoyanii i ob okhrane okruzhayushchey sredy goroda Sevastopolya za 2019 god [Annual report on the state and environmental protection of the city of Sevastopol for 2019]. Sevastopol, 2020, 316 p.

[22] Saltykov A.N. Sistemnaya tselostnost’ i skhodstvo prostranstvenno-vozrastnoy struktury podrosta sosny obyknovennoy i sosny krymskoy [System integrity and similarity of the space-age structure of the undergrowth of Scots pine and Crimean pine]. Byulleten’ Gosudarstvennogo Nikitskogo botanicheskogo sada [Bulletin of the State Nikitsky Botanical Garden], 2021, v. 141, pp. 44–54.

[23] Koba V.P. K probleme vosproizvodstva estestvennyh drevostoev Pinus pallasiana D. Don. [On the problem of reproduction of natural stands of Pinus pallasiana D. Don.]. Sbornik nauchnyh trudov Gosudarstvennogo Nikitskogo botanicheskogo sada [Collection of scientific works of the State Nikitsky Botanical Garden], 2004, v. 123, pp. 178–86.

[24] Koba, V.P. Vozobnovlenie korennyh nasazhdenij Pinus pallasiana D. Don posle verhovyh pozharov na fone dinamiki abioticheskih faktorov v postpirogennyj period [Restoration of indigenous plantations of Pinus pallasiana D. Don after crown fires against the background of the dynamics of abiotic factors in the post-pyrogenic period] Rastitelnye resursy [Plant Resources], 2004. v. 40(2), pp. 19–30.

[25] Koba V.P., Zhigalova T.P. Vliyanie travoyadnykh zhivotnykh na vozobnovlenie sosny krymskoy v usloviyakh pustoshi gorel’nikov [Influence of herbivores on the renewal of the Crimean pine in the conditions of the barren wasteland]. Uchenye zapiski Tavricheskogo natsional’nogo universiteta im. V.I. Vernadskogo. Seriya: Biologiya [Uchenye zapiski Tavricheskogo natsional’nogo universiteta im. IN AND. Vernadsky. Series: Biology], 2012, v. 25 (64), no. 1, pp. 92–97.

Authors’ information

Koba Vladimir Petrovich — Dr. Sci. (Biology), Professor, Head of the Laboratory of Forest Science of the FSBSI «Order of the Red Banner of Labor Nikitsky Botanical Garden — National Scientific Center of the Russian Academy of Sciences», kobavp@mail.ru

Saltykov Andrey Nikolaevich — Cand. Sci. (Agriculture), Associate Professor, Head of the Department of Forestry and Landscape Construction of the Institute «Agrotechnological Academy», V.I. Vernadsky Crimean Federal University, saltykov.andrey.1959@mail.ru

Makarov Nikita Aleksandrovich — pg. of the Laboratory of Forest science of the Order of the Red Banner of Labor Nikitsky Botanical Garden — National Scientific Center of the Russian Academy of Sciences, makarov.crimea@yandex.ru

Korenkova Olesya Olegovna — Cand. Sci. (Biology), Researcher of the Laboratory of Forest science of the Order of the Red Banner of Labor Nikitsky Botanical Garden — National Research Center of the RAS, o.o.korenkova@mail.ru

4 СЕМЕНОШЕНИЕ КЕДРА КОРЕЙСКОГО (PINUS KORAIENSIS SIEB. ET ZUCC.) ПРИ ЕГО ИНТРОДУКЦИИ В УСЛОВИЯХ ЛЕСОСТЕПИ ВОРОНЕЖСКОЙ ОБЛАСТИ 36–47

УДК 630*161+630*232.43

DOI: 10.18698/2542-1468-2023-3-36-47

Шифр ВАК 4.1.2

С.В. Левин

ФГБУ «Всероссийский научно-исследовательский институт лесной генетики, селекции и биотехнологии», Россия, 394087, г. Воронеж, ул. Ломоносова, д. 105

leslesovik63@yandex.ru

Представлены материалы исследований интродукции кедра корейского в условиях лесостепи Воронежской области. Определено полное соответствие процессов его жизнедеятельности условиям интродукции. Установлено влияние фактора размещения деревьев на территории — свободного или в составе иных хвойных пород на семеношение. Выявлено увеличение урожайности деревьев при применении искусственного опыления к ним по сравнению с недоопыленными. Обращено внимание на момент формирования многовершинной кроны дерева путем образования на вершине центрального проводника «пустой» шишки. Указано на высокую перспективность выращивания породы в данных условиях с получением как лесоводственного, так и экономического эффекта. Дан прогноз урожайности культур кедра корейского при соблюдении определенных условий технологии. С их учетом при создании лесосеменного объекта кедра корейского с 1 га лесокультурной площади можно получать урожай с момента возраста прививки в 25 лет в количестве 123 кг орешков.

Ключевые слова: интродукция, кедры корейский (Pinus кoraiensis Sieb. еt Zucc.) и сибирский (Pinus sibirica du Tour.), привитые и не привитые деревья, шишки, семеношение, урожайность

Ссылка для цитирования: Левин С.В. Семеношение кедра корейского (Pinus koraiensis Sieb. et Zucc.) при его интродукции в условиях лесостепи Воронежской области // Лесной вестник / Forestry Bulletin, 2023. Т. 27. № 3. С. 36–47. DOI: 10.18698/2542-1468-2023-3-36-47

Список литературы

[1] Бобров Е.Г. Лесообразующие хвойные СССР. Л.: Наука, 1978. 189 с.

[2] Великов А.В., Потенко В.В. Генетические ресурсы сосны корейской на Дальнем Востоке России: теоретические основы и прикладные аспекты. М.: Наука, 2006. 174 с.

[3] Фэнсян С., Чженьчжоу Л., Хайбо Д., Мэйин Г. Технологии выращивания орехоплодных на примере сосны корейской в полузасушливых районах Северо-Востока Китая // Охрана и рациональное использование лесных ресурсов: Материалы X Междунар. форума (Благовещенск, 5–6 июня 2019 г.), в 2 ч., ч.1. Благовещенск: Изд-во Дальневосточного гос. аграрного ун-та, 2019. С. 166–171.

[4] Кабанов Н.Е. Хвойные деревья и кустарники Дальнего Востока. М.: Наука, 1977. 175 с.

[5] Дроздов И.И., Дроздов Ю.И. Лесная интродукция. М.: МГУЛ, 2005. 136 c.

[6] Ирошников А.И., Твеленев М.В. Изучение генофонда, интродукции и селекции кедровых сосен // Лесоведение, 2001. № 4. С. 62–68.

[7] Кузнецова Г.В. Рост, состояние и развитие кедровых сосен в географических культурах на юге Красноярского края // Хвойные бореальной зоны, 2010. Т. XXVII. № 1–2. С. 102–107.

[8] Никитенко Е.А. Лесоводственные аспекты интенсификации воспроизводства кедра корейского (Pinus Koraiensis (Siebold et Zucc.)) на Дальнем Востоке: автореф. дис. … канд. с.-х. наук: 06.03.02. Уссурийск, 2010. 26 с.

[9] Гриднев А.Н., Мамедова Л.С. К вопросу о методике изучения состояния лесных культур кедра корейского на юге Приморского края // Аграрный вестник Приморья, 2014. № 1. С. 51–54.

[10] Лукин А.В. Основные итоги интродукции видов рода Pinus в Центрально-Черноземных областях // Генетика, селекция и интродукция лесных пород: сб. науч. трудов. Вып. 1. Воронеж: Изд-во Центрального научно-исследовательского института лесной генетики и селекции, 1974. С. 101–104.

[11] Миронов В.В. Экология хвойных пород при искусственном лесовозобновлении. М.: Лесная пром-сть, 1977. 232 c.

[12] Левин С.В., Пащенко В.И. Лесоводственно-биологические особенности сосны кедровой корейской при ее интродукции на территории Центрально-Черноземного региона России // Вестник Поволжского государственного технологического университета. Серия: Лес. Экология. Природопользование, 2019. № 4 (44). С. 80–91.

[13] Левин С.В., Пащенко В.И. Перспективы интродукции вида сосны кедровой корейской в защитных лесах малолесной зоны европейской части России // Сохранение лесных генетических ресурсов. Материалы V Междунар. конф.-совещ. ГНПО НПЦ Национальной академии наук Беларуси по биоресурсам, Институт леса Национальной академии наук Беларуси, Министерство лесного хозяйства Республики Беларусь, Институт леса Национальной академии наук Беларуси, Гомель, 02–07 октября 2017 г. Гомель: ООО Колордрук, 2017. С. 111–114.

[14] Левин С.В. Адаптация кедра корейского при интродукции в условиях лесостепной зоны ЦЧР // Наука — лесному хозяйству Севера. Сб. науч. трудов ФБУ «Северный научно-исследовательский институт лесного хозяйства» / под ред. Н.А. Демидовой. Архангельск: Изд-во Северного науч.-исслед. института лесного хозяйства, 2019. С. 211–221.

[15] Левин С.В. Развитие кедра корейского при интродукции в условиях лесостепной зоны Центрально-Черноземного района (ЦЧР) России // Охрана и рациональное использование лесных ресурсов. Материалы X Междунар. Форума. Дальневосточный государственный аграрный университет; Управление лесного и степного хозяйства округа г. Хэйхэ, провинции Хэйлунцзян (КНР); Министерство лесного хозяйства и пожарной безопасности Амурской области, Благовещенск — Хэйхэ, 05–06 июня 2019 г. Благовещенск: Изд-во ДальГАУ, 2019. С. 93–97.

[16] Некрасов В.Н. Основы семеноведения древесных растений при интродукции. М.: Наука, 1973. 276 с.

[17] Петров М.Ф. Кедровые леса и их использование. М.; Л.: Гослесбумиздат, 1961. 131 с.

[18] Кречетова Н.В., Емлевская А.Т., Сенчукова Т.В., Штейнникова В.И. Семена и плоды деревьев Дальнего Востока. М.: Лесная пром-сть, 1972. 80 с.

[19] Усенко Н.В. Деревья, кустарники и лианы Дальнего Востока. Хабаровск: Хабаровское книжное изд-во, 1984. 272 c.

[20] Орехова Т.П. Семена дальневосточных деревянистых растений (морфология, анатомия, биохимия и хранение). Владивосток: Дальнаука, 2005. 161 с.

[21] Руководство по организации и ведению хозяйства в кедрово- широколиственных лесах Дальнего Востока (кедр корейский). Хабаровск: Изд-во ДальНИИЛХ, 2003. 161 с.

[22] Кузнецова Г.В. Рост и сохранность географических культур кедра сибирского и кедра корейского в Красноярском крае // Проблемы кедра: сб. науч. трудов. Вып. 4. Томск: Изд-во Томского науч. центра СО АН СССР, 1990. С. 78–82.

[23] Альбенский А.Б. Разведение быстрорастущих и ценных деревьев и кустарников. М.: Сельхозгиз, 1940. 223 с.

[24] Кречетова Н.В., Штейникова В.И. Плодоношение кедра корейского / под ред. К.П. Соловьева. Хабаровск: Хабаровское книжное изд-во, 1963. 60 с.

Сведения об авторе

Левин Сергей Валерьевич — канд. с.-х. наук, науч. сотр. отдела опытных испытаний ФГБУ «Всероссийский научно-исследовательский институт лесной генетики, селекции и биотехнологии», leslesovik63@yandex. ru

KOREAN CEDAR (PINUS KORAIENSIS SIEB. ET ZUCC.) SEED PRODUCTION DURING ITS INTRODUCTION IN VORONEZH REGION FOREST-STEPPE

S.V. Levin

All-Russian Research Institute of Forest Genetics, Breeding and Biotechnology, 105, Lomonosov st., 394087, Voronezh, Russia

leslesovik63@yandex.ru

The paper presents the research materials of Korean cedar introduction in the forest-steppe conditions of Voronezh region. Full compliance of its vital processes with the conditions of introduction is determined. The influence of the factor of tree placement in the territory — free or as part of other conifers on seed production — has been established. The increase of trees yield was revealed when artificial pollination was applied to them in comparison with non-pollinated trees. Attention was drawn to the moment of formation of multi-top tree crowns by formation of «empty» cone at the top of the central conductor. The high perspectivity of the breed cultivation in these conditions with obtaining both silvicultural and economic effect is pointed out. The forecast of yield of Korean pine crops under certain conditions of technology is given. Taking them into account in the creation of Korean pine seed object from 1 hectare of cultivated area it is possible to obtain the yield from the moment of grafting age in 25 years in the amount of 123 kg of nuts.

Keywords: introduction, Korean cedars (Pinus koraiensis Sieb. et Zucc.) and Siberian cedars (Pinus sibirica du Tour.), grafted and ungrafted trees, cones, seed production, productivity

Suggested citation: Levin S.V. Semenoshenie kedra koreyskogo (Pinus koraiensis Sieb. et Zucc.) pri ego introduktsii v usloviyakh lesostepi Voronezhskoy oblasti [Korean cedar (Pinus koraiensis Sieb. et Zucc.) seed production during its introduction in voronezh region forest-steppe ]. Lesnoy vestnik / Forestry Bulletin, 2023, vol. 27, no. 3, pp. 36–47. DOI: 10.18698/2542-1468-2023-3-36-47

References

[1] Bobrov E.G. Lesoobrazuyushchie khvoynye SSSR [Forest-forming conifers of the USSR]. Leningrad: Nauka, 1978, 189 p.

[2] Velikov A.V., Potenko V.V. Geneticheskie resursy sosny koreyskoy na Dal’nem Vostoke Rossii: teoreticheskie osnovy i prikladnye aspekty [Korean pine genetic resources in the Russian Far East: theoretical foundations and applied aspects]. Moscow: Nauka, 2006, 174 p.

[3] Fensyan S., Chzhen’chzhou L., Khaybo D., Meyin G. Tekhnologii vyrashchivaniya orekhoplodnykh na primere sosny koreyskoy v poluzasushlivykh rayonakh severo-vostoka Kitaya [Technologies for growing walnuts on the example of Korean pine in semi-arid regions of northeast China]. Okhrana i ratsional’noe ispol’zovanie lesnykh resursov: mater. X mezhdunar. foruma (Blagoveshchensk, 5–6 iyunya 2019 g.) [Protection and rational use of forest resources: X int. forum (Blagoveshchensk, June 5–6, 2019), at 2 p., part 1. Blagoveshchensk: Publishing House of the Far Eastern State Agrarian University, 2019, pp. 166–171.

[4] Kabanov N.E. Khvoynye derev’ya i kustarniki Dal’nego Vostoka [Coniferous trees and shrubs of the Far East]. Moscow: Nauka, 1977, 175 p.

[5] Drozdov I.I., Drozdov Yu.I. Lesnaya introduktsiya [Forest introduction]. Moscow: MGUL, 2005, 136 p.

[6] Iroshnikov A.I., Tvelenev M.V. Izuchenie genofonda, introduktsii i selektsii kedrovykh sosen [Study of the gene pool, introduction and selection of cedar pines]. Lesovedenie, 2001, no. 4, pp. 62–68.

[7] Kuznetsova G.V. Rost, sostoyanie i razvitie kedrovykh sosen v geograficheskikh kul’turakh na yuge Krasnoyarskogo kraya [Growth, condition and development of cedar pines in geographical crops in the south of the Krasnoyarsk Territory]. Khvoynye boreal’noy zony [Coniferous boreal zone], 2010, v. XXVII. no. 1–2, pp. 102–107.

[8] Nikitenko E.A. Lesovodstvennye aspekty intensifikatsii vosproizvodstva kedra koreyskogo (Pinus Koraiensis (Siebold et Zucc.)) na Dal’nem Vostoke [Silvicultural aspects of the intensification of the reproduction of the Korean pine (Pinus Koraiensis (Siebold et Zucc.)) in the Far East]. Diss. Cand. Sci. (Agric.) 06.03.02. Ussuriysk, 2010, 26 p.

[9] Gridnev A.N., Mamedova L.S. K voprosu o metodike izucheniya sostoyaniya lesnykh kul’tur kedra koreyskogo na yuge Primorskogo kraya [On the question of the methodology for studying the state of Korean pine forest cultures in the south of Primorsky Krai]. Agrarnyy vestnik Primor’ya [Agrarian Bulletin of Primorye], 2014, no. 1, pp. 51–54.

[10] Lukin A.V. Osnovnye itogi introduktsii vidov roda Pinus v Tsentral’no-chernozemnykh oblastyakh [The main results of the introduction of species of the genus Pinus in the Central Chernozem Regions]. Genetika, selektsiya i introduktsiya lesnykh porod: sb. nauch. trudov. Vyp. 1 [Genetics, selection and introduction of forest species: collection of articles. scientific works], iss. 1. Voronezh: Central Research Institute of Forest Genetics and Breeding, 1974, pp. 101–104.

[11] Mironov V.V. Ekologiya khvoynykh porod pri iskusstvennom lesovozobnovlenii [Ecology of coniferous species during artificial reforestation]. Moscow: Lesnaya promyshlennost’, 1977, 232 p.

[12] Levin S.V., Pashchenko V.I. Lesovodstvenno-biologicheskie osobennosti sosny kedrovoy koreyskoy pri ee introduktsii na territorii Tsentral’no-Chernozemnogo regiona Rossii [Silvicultural and biological features of the Korean cedar pine during its introduction on the territory of the Central Black Earth region of Russia]. Vestnik Povolzhskogo gosudarstvennogo tekhnologicheskogo universiteta. Seriya: Les. Ekologiya. Prirodopol’zovanie [Bulletin of the Volga State Technological University. Series: Forest. Ecology. Nature management], 2019, no. 4 (44), pp. 80–91.

[13] Levin S.V., Pashchenko V.I. Perspektivy introduktsii vida sosny kedrovoy koreyskoy v zashchitnykh lesakh malolesnoy zony evropeyskoy chasti Rossii [Prospects for the introduction of the Korean pine species in the protective forests of the sparsely forested zone of the European part of Russia]. Sokhranenie lesnykh geneticheskikh resursov. Mater. V Mezhdunarodnoy konferentsii-soveshchaniya GNPO NPTs Natsional’noy akademii nauk Belarusi po bioresursam, Institut lesa Natsional’noy akademii nauk Belarusi, Ministerstvo lesnogo khozyaystva Respubliki Belarus’, Institut lesa Natsional’noy akademii nauk Belarusi [Preservation of Forest Genetic Resources. Mater. V International Conference-Meeting of the SNPO SPC of the National Academy of Sciences of Belarus on Bioresources, Forest Institute of the National Academy of Sciences of Belarus, Ministry of Forestry of the Republic of Belarus, Forest Institute of the National Academy of Sciences of Belarus], Gomel, October 02–07, 2017. Gomel: Kolordruk, 2017, pp. 111–114.

[14] Levin S.V. Adaptatsiya kedra koreyskogo pri introduktsii v usloviyakh lesostepnoy zony TsChR [Adaptation of the Korean pine during introduction in the conditions of the forest-steppe zone of the Central Chernozem Region]. Nauka — lesnomu khozyaystvu Severa. Sb. nauch. trudov FBU «Severnyy nauchno-issledovatel’skiy institut lesnogo khozyaystva» [Science to the forestry of the North. Sat. scientific Proceedings of the FBU «Northern Research Institute of Forestry»]. Ed. N.A. Demidova. Arkhangelsk: Northern Research Institute of Forestry, 2019, pp. 211–221.

[15] Levin S.V. Razvitie kedra koreyskogo pri introduktsii v usloviyakh lesostepnoy zony Tsentral’no-Chernozemnogo rayona (TsChR) Rossii [Development of Korean pine during introduction in the conditions of the forest-steppe zone of the Central Chernozem region (TsChR) of Russia]. Okhrana i ratsional’noe ispol’zovanie lesnykh resursov. Materialy X Mezhdunarodnogo Foruma. Dal’nevostochnyy gosudarstvennyy agrarnyy universitet; Upravlenie lesnogo i stepnogo khozyaystva okruga g. Kheykhe, provintsii Kheyluntszyan (KNR); Ministerstvo lesnogo khozyaystva i pozharnoy bezopasnosti Amurskoy oblasti [Protection and rational use of forest resources. Materials of the X International Forum. Far Eastern State Agrarian University; Department of Forestry and Steppe Economy of Heihe District, Heilongjiang Province (PRC); Ministry of Forestry and Fire Safety of the Amur Region], Blagoveshchensk — Heihe, June 05–06, 2019 Blagoveshchensk: DalGAU, 2019, pp. 93–97.

[16] Nekrasov V.N. Osnovy semenovedeniya drevesnykh rasteniy pri introduktsii [Fundamentals of seed science of woody plants during introduction]. Moscow: Nauka, 1973, 276 p.

[17] Petrov M.F. Kedrovye lesa i ikh ispol’zovanie [Cedar forests and their use]. Moscow–Leningrad: Goslesbumizdat, 1961, 131 p.

[18] Krechetova N.V., Emlevskaya A.T., Senchukova T.V., Shteynnikova V.I. Semena i plody derev’ev Dal’nego Vostoka [Seeds and fruits of trees of the Far East]. Moscow: Lesnaya promyshlennost’, 1972, 80 p.

[19] Usenko N.V. Derev’ya, kustarniki i liany Dal’nego Vostoka [Trees, shrubs and lianas of the Far East]. Khabarovsk: Khabarovsk book publishing house, 1984, 272 p.

[20] Orekhova T.P. Semena dal’nevostochnykh derevyanistykh rasteniy (morfologiya, anatomiya, biokhimiya i khranenie) [Seeds of Far Eastern woody plants (morphology, anatomy, biochemistry and storage)]. Vladivostok: Dalnauka, 2005, 161 p.

[21] Rukovodstvo po organizatsii i vedeniyu khozyaystva v kedrovo- shirokolistvennykh lesakh Dal’nego Vostoka (kedr koreyskiy) [Guidelines for the organization and management of the economy in the cedar-deciduous forests of the Far East (Korean cedar)]. Khabarovsk: DalNIILKh, 2003, 161 p.

[22] Kuznetsova G.V. Rost i sokhrannost’ geograficheskikh kul’tur kedra sibirskogo i kedra koreyskogo v Krasnoyarskom krae [Growth and preservation of geographical cultures of Siberian stone pine and Korean stone pine in the Krasnoyarsk Territory]. Problemy kedra: sb. nauch. trudov. Vyp. 4 [Problems of Siberian stone pine: Sat. scientific works. Issue. 4]. Tomsk: Tomsk Scientific Center of the Siberian Branch of the USSR Academy of Sciences, 1990, pp. 78–82.

[23] Al’benskiy A.B. Razvedenie bystrorastushchikh i tsennykh derev’ev i kustarnikov [Cultivation of fast-growing and valuable trees and shrubs]. Moscow: Selkhozgiz, 1940, 223 p.

[24] Krechetova N.V., Shteynikova V.I. Plodonoshenie kedra koreyskogo [Fruiting of the Korean cedar]. Ed. K.P. Solovyova. Khabarovsk: Khabarovsk Book Publishing House, 1963, 60 p.

Author’s information

Levin Sergey Valer’evich — Cand. Sci. (Agriculture), Researcher of the Experimental Testing Department of the All-Russian Research Institute of Forest Genetics, Breeding and Biotechnology, leslesovik63@yandex.ru

5 ВЛИЯНИЕ КЛЕНА ЯСЕНЕЛИСТНОГО (ACER NEGUNDO L.) НА ЕСТЕСТВЕННОЕ ВОЗОБНОВЛЕНИЕ СОСНЫ ОБЫКНОВЕННОЙ В БАРНАУЛЬСКОМ ЛЕНТОЧНОМ БОРУ 48–56

УДК 574.476

DOI: 10.18698/2542-1468-2023-3-48-56

Шифр ВАК 4.1.6

А.А. Малиновских

ФГБОУ ВО «Алтайский государственный аграрный университет», Россия, 656049, Алтайский край, г. Барнаул, пр. Красноармейский, д. 98

almaa1976@yandex.ru

Рассмотрено влияние клена ясенелистного (Acer negundo L.) на естественное возобновление сосны обыкновенной в Барнаульском ленточном бору в разных типах лесорастительных условий. Установлено, что клен ясенелистный образует густой сомкнутый подлесок высотой до 10 м во влажных лесорастительных усло-виях (А3), а в свежих лесорастительных условиях (А2) встречается только единично. Определена сомкнутость: подлеска из клена в травяном бору — 0,8…1,0 ед., подлеска с преобладанием местных видов растений (рябины сибирской, ивы козьей) в травяном бору — не выше 0,5 ед., в свежем бору — не выше 0,2…0,4 ед. Установлено, что в травяном бору с подлеском из клена относительная освещенность составляет не более 7,9 %, тогда как в травяном и свежем бору с подлеском из местных видов 29,5…47,9 %. Определена густота подроста сосны в свежем бору с подлеском из местных видов — 7,5…17,5 тыс. шт./га, что больше в 3–7 раз, чем в травяном бору с подлеском из местных видов. Выявлена тесная положительная связь между относительной освещенностью под пологом леса и густотой подроста (r = 0,830), поэтому клен ясенелистный считается агрессивной нежелательной породой, лимитирующей освещенность — важнейший экологический фактор, что вызывает исчезновение подроста сосны под пологом леса.

Ключевые слова: ленточные боры, подрост, сосна обыкновенная, клен ясенелистный, освещенность, полог леса, подлесок

Ссылка для цитирования: Малиновских А.А. Влияние клена ясенелистного (Acer negundo L.) на естественное возобновление сосны обыкновенной в Барнаульском ленточном бору // Лесной вестник / Forestry Bulletin, 2023. Т. 27. № 3. С. 48–56. DOI: 10.18698/2542-1468-2023-3-48-56

Список литературы

[1] Калиниченко Н.П., Писаренко А.И., Смирнов Н.А. Лесовосстановление на вырубках. М.: Лесная пром-сть, 1973. 326 с.

[2] Мелехов И.С. Биология, экология и география возобновления леса // Возобновление леса. М.: Колос, 1975. С. 4–22.

[3] Писаренко А.И. Лесовосстановление. М.: Лесная пром-сть, 1977. 250 с.

[4] Крылов Г.В. Леса Западной Сибири. М.: Изд-во АН СССР, 1962. 256 с.

[5] Луганская В.Д., Луганский Н.А. Некоторые экологические особенности возобновления сосны под пологом насаждений // Леса Урала и хозяйство в них, 1978. Вып. 11. С. 31–54.

[6] Санников С.Н., Санникова Н.С. Экология возобновления сосны под пологом леса. М.: Наука, 1985. 152 с.

[7] Санников С.Н. Экология и география естественного возобновления сосны обыкновенной. М.: Наука, 1992. 264 с.

[8] Месоед И.Ю. Основные типы леса и естественное возобновление сосны в средней части зоны ленточных боров // Труды Лебяжинской ЗОНЛОС. Свердловск; Москва: Гослестехиздат, 1934. Вып. 1. С. 50–72.

[9] Грибанов Л.Н. Ленточные боры Алтайского края и Казахстана. М.: Сельхозгиз, 1954. 151 с.

[10] Бугаев В.А., Косарев Н.Г. Лесное хозяйство ленточных боров Алтайского края. Барнаул: Алтайское кн. изд-во, 1988. 312 с.

[11] Парамонов Е.Г. Хвойные на юге Западной Сибири. Барнаул: Изд-во АлтГУ, 2011. 329 с.

[12] Ишутин Я.Н. Лесовосстановление на гарях в ленточных борах Алтая. Барнаул: Изд-во Алтайского ун-та, 2004. 114 с.

[13] Зленко Л.В., Ключников М.В. Влияние низовых пожаров на возобновление сосны в Приобском левобережном районе Алтая. Красноярск: Изд-во СибГТУ, 2013. 115 с.

[14] Терехина Т.А., Овчарова Н.В., Елесова Н.В. Биологическая и структурная оценка популяций клена ясенелистного (Acer negundo L.) в Барнаульском ленточном бору // Проблемы ботаники Южной Сибири и Монголии, 2020. Т. 19. № 2. С. 374–379.

[15] Черная Книга флоры Сибири. Новосибирск: Академическое изд-во «Гео», 2016. 440 с.

[16] Виноградова Ю.К., Майоров С.Р., Хорун Л.В. Черная книга флоры Средней России: чужеродные виды растений в экосистемах Средней России. М.: ГЕОС, 2010. 512 с.

[17] Жуков Р.С., Ломоносова Л.М. Клен ясенелистный в городских лесах Москвы // Научное обозрение. Биологические науки, 2016. № 3. С. 49–50.

[18] Зыкова Е.Ю., Эрст А.С. Находки некоторых редких и адвентивных видов растений в Сибири // Turczaninovia, 2012. Т. 15. № 4. С. 34–40.

[19] Pyšek P., Pergl J., Essl F., Lenzner B., Dawson W., Kreft H.,Weigelt P., Winter M. Naturalized and invasive flora of the world: species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion // Preslia, 2017, v. 89, pp. 203–274.

[20] Gioria M., Osborne B.A. Resource competition in plant invasions: emerging patterns and research needs // Front. Plant Sci., 2014, v. 5, pp. 1–21.

[21] Gooden B., French K. Impacts of alien grass invasion in coastal seed banks vary amongst native growth forms and dispersal strategies // Biol. Conserv., 2014, v. 171, pp. 114–126.

[22] Kumschick S., Gaertner M., Vila M., Essl F. Ecological impacts of alien species: quantification, scope, caveats and recommendations // BioScience, 2015, v. 65, no. 1, pp. 55–63.

[23] Kleunen van M., Dawson W., Essl F., Pergl J. et al. Global exchange and accumulation of non-native plants // Nature, 2015, v. 525, no. 7567, pp. 100–103.

[24] Richardson D.M., Pyšek P. Naturalization of introduced plants: ecological drivers of biogeographical patterns // New Phytol, 2012, v. 196, no. 2. pp. 383–396.

[25] Vila M., Gimeno I. Does invasion by an alien plant species affect the soil seed bank? // J. Veg. Sci., 2007, v. 18, no. 3, pp. 423–430.

[26] Лесохозяйственный регламент Барнаульского лесничества Алтайского края. Барнаул, 2022. 129 с. URL: https://docs.cntd.ru/document/550190366 (дата обращения 12.01.2023).

[27] Методы изучения лесных сообществ. СПб.: Изд-во НИИХимии СПбГУ, 2002. 240 с.

[28] Черепанов С.К. Сосудистые растения России и сопредельных государств (в пределах бывшего СССР). СПб.: Мир и семья, 1995. 992 с.

[29] Алексеев В.А. Световой режим леса. М.: Наука, 1975. 228 с.

[30] Рязапов Р.И., Кабанов С.В. Подпологовая освещенность в старовозрастных сосняках естественного происхождения южной части Приволжской возвышенности и ее влияние на жизненность подроста сосны // Вестник Алтайского государственного аграрного университета, 2011. № 3. С. 54–60.

Сведения об авторе

Малиновских Алексей Анатольевич — канд. биол. наук, доцент кафедры лесного хозяйства, ФГБОУ ВО «Алтайский государственный аграрный университет», almaa1976@yandex.ru

INFLUENCE OF ASH-LEAVED MAPLE (ACER NEGUNDO L.) ON SCOTS PINE NATURAL RENEWAL IN BARNAUL RIBBON PINE FOREST

A.A. Malinovskikh

Altai State Agricultural University, 98, Krasnoarmeyskiy prospekt, 656049, Barnaul, Altai Region, Russia

almaa1976@yandex.ru

The influence of ash-leaved maple (Acer negundo L.) on the natural regeneration of scots pine in the Barnaul ribbon forest in different types of forest growing conditions is considered. It was found that the ash-leaved maple forms a dense, closed undergrowth up to 10 m high in moist forest-growing conditions (A3), whereas in fresh forest-growing conditions (A2) it was noted only once. The closeness of the undergrowth of maple in the grass forest is 0,8…1,0 units, while the undergrowth with a predominance of local plant species (Siberian mountain ash, goat willow) in the grass forest has a closeness of no more than 0,5 units, in the fresh forest no higher than 0,2…0,4 units. The undergrowth of maple strongly obscures the components of the forest located under it: living ground cover and undergrowth. The shading of the living ground cover leads to its significant transformation, with a change in the floral composition and structure. Shading of the undergrowth leads to a complete absence of seedlings, self-seeding and the actual undergrowth of the common pine, interrupting the process of natural renewal. Using the obtained values of illumination under the canopy of the forest, it was found that in a grassy forest with a maple understory, the relative illumination is no more than 7,9 %, whereas in a grassy and fresh forest with an undergrowth of local species, 29,5…47,9 %. The density of pine undergrowth in a fresh forest with undergrowth of local species is 7,5…17,5 thousand units/ha, which is 3–7 times more than in a grass forest with undergrowth of local species. There is a close positive relationship between the relative illumination under the forest canopy and the density of undergrowth (r = 0,830). Ash-leaved maple acts as an aggressive undesirable breed, which limits the most important environmental factor — illumination, leading to the disappearance of pine undergrowth under the canopy of the forest.

Keywords: ribbon forests, undergrowth, scots pine, ash-leaved maple, illumination, forest canopy, undergrowth

Suggested citation: Malinovskikh A.A. Vliyanie klena yasenelistnogo (Acer negundo L.) na estestvennoe vozobnovlenie sosny obyknovennoy v Barnaul’skom lentochnom boru [Influence of ash-leaved maple (Acer negundo L.) on scots pine natural renewal in Barnaul ribbon pine forest]. Lesnoy vestnik / Forestry Bulletin, 2023, vol. 27, no. 3, pp. 48–56. DOI: 10.18698/2542-1468-2023-3-48-56

References

[1] Kalinichenko N.P., Pisarenko A.I., Smirnov N.A. Lesovosstanovlenie na vyrubkakh [Reforestation in cuttings]. Moscow: Lesnaya promyshlennost’, 1973, 326 p.

[2] Melekhov I.S. Biologiya, ekologiya i geografiya vozobnovleniya lesa [Biology, ecology and geography of forest renewal]. Vozobnovlenie lesa [Reforestation]. Moscow: Kolos, 1975, pp. 4–22.

[3] Pisarenko A.I. Lesovosstanovlenie [Reforestation]. Moscow: Lesnaya promyshlennost’, 1977, 250 p.

[4] Krylov G.V. Lesa Zapadnoy Sibiri [Forests of Western Siberia]. Moscow: AN SSSR, 1962, 256 p.

[5] Luganskaya V.D., Luganskiy N.A. Nekotorye ekologicheskie osobennosti vozobnovleniya sosny pod pologom nasazhdeniy [Some ecological features of pine renewal under the canopy of plantings]. Lesa Urala i khozyaystvo v nikh [Forests of the Urals and households in them], 1978, v. 11, pp. 31–54.

[6] Sannikov S.N., Sannikova N.S. Ekologiya vozobnovleniya sosny pod pologom lesa [Ecology of pine renewal under the forest canopy]. Moscow: Nauka, 1985, 152 p.

[7] Sannikov S.N. Ekologiya i geografiya estestvennogo vozobnovleniya sosny obyknovennoy [Ecology and geography of the natural renewal of scots pine]. Moscow: Nauka, 1992, 264 p.

[8] Mesoed I.Yu. Osnovnye tipy lesa i estestvennoe vozobnovlenie sosny v sredney chasti zony lentochnykh borov [The main types of forest and the natural renewal of pine in the middle part of the belt forest zone]. Trudy Lebyazhinskoy ZONLOS [Proceedings of Lebyazhinskaya ZONLOS]. Sverdlovsk; Moscow: Goslestekhizdat, 1934, v. 1, pp. 50–72.

[9] Gribanov L.N. Lentochnye bory Altayskogo kraya i Kazakhstana [Ribbon forests of the Altai Territory and Kazakhstan]. Moscow: Sel’khozgiz, 1954, 151 p.

[10] Bugaev V.A., Kosarev N.G. Lesnoe khozyaystvo lentochnykh borov Altayskogo kraya [Forestry of ribbon hogs of the Altai Territory]. Barnaul: Altai book publishing house, 1988, 312 p.

[11] Paramonov E.G. Khvoynye na yuge Zapadnoy Sibiri [Conifers in the south of Western Siberia]. Barnaul: AltGU, 2011, 329 p.

[12] Ishutin Ya.N. Lesovosstanovlenie na garyakh v lentochnykh borakh Altaya [Reforestation on burning fires in the ribbon forests of Altai]. Barnaul: AltGU, 2004, 114 p.

[13] Zlenko L.V., Klyuchnikov M.V. Vliyanie nizovykh pozharov na vozobnovlenie sosny v Priobskom levoberezhnom rayone Altaya [The impact of grass-roots fires on the renewal of pine trees in the Priobsky left-bank district of Altai]. Krasnoyarsk: SibGTU, 2013, 115 p.

[14] Terekhina T.A., Ovcharova N.V., Elesova N.V. Biologicheskaya i strukturnaya otsenka populyatsiy klena yasenelistnogo (Acer negundo L.) v Barnaul’skom lentochnom boru [Biological and structural assessment of populations of ash-leaved maple (Acer negundo L.) in the Barnaul ribbon forest]. Problemy botaniki Yuzhnoy Sibiri i Mongolii [Problems of Botany of Southern Siberia and Mongolia], 2020, v. 19, no. 2, pp. 374–379.

[15] Chernaya Kniga flory Sibiri [Black book of Siberian flora]. Novosibirsk: Academic publishing house «Geo», 2016, 440 p.

[16] Vinogradova Yu.K., Mayorov S.R., Khorun L.V. Chernaya kniga flory Sredney Rossii: chuzherodnye vidy rasteniy v ekosistemakh Sredney Rossii [The Black Book of the Flora of Central Russia: Alien Plant Species in the Ecosystems of Central Russia]. Moscow: GEOS, 2010, 512 p.

[17] Zhukov R.S., Lomonosova L.M. Klen yasenelistnyy v gorodskikh lesakh Moskvy [Ash-leaved maple in the urban forests of Moscow]. Nauchnoe obozrenie. Biologicheskie nauki [Scientific review. Biological sciences], 2016, no. 3, pp. 49–50.

[18] Zykova E.Yu., Erst A.S. Nakhodki nekotorykh redkikh i adventivnykh vidov rasteniy v Sibiri [Findings of some rare and adventitious plant species in Siberia]. Turczaninovia, 2012, v. 15, no. 4, pp. 34–40.

[19] Pyšek P., Pergl J., Essl F., Lenzner B., Dawson W., Kreft H.,Weigelt P., Winter M. Naturalized and invasive flora of the world: species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia, 2017, v. 89, pp. 203–274.

[20] Gioria M., Osborne B.A. Resource competition in plant invasions: emerging patterns and research needs. Front. Plant Sci., 2014, v. 5, pp. 1–21.

[21] Gooden B., French K. Impacts of alien grass invasion in coastal seed banks vary amongst native growth forms and dispersal strategies. Biol. Conserv., 2014, v. 171, pp. 114–126.

[22] Kumschick S., Gaertner M., Vila M., Essl F. Ecological impacts of alien species: quantification, scope, caveats and recommendations. BioScience, 2015, v. 65, no. 1, pp. 55–63.

[23] Kleunen van M., Dawson W., Essl F., Pergl J. Global exchange and accumulation of non-native plants. Nature, 2015, v. 525, no. 7567, pp. 100–103.

[24] Richardson D.M., Pyšek P. Naturalization of introduced plants: ecological drivers of biogeographical patterns. New Phytol, 2012, v. 196, no. 2, pp. 383–396.

[25] Vila M., Gimeno I. Does invasion by an alien plant species affect the soil seed bank? J. Veg. Sci., 2007, v. 18, no. 3, pp. 423–430.

[26] Lesokhozyaystvennyy reglament Barnaul’skogo lesnichestva Altayskogo kraya [Forestry regulations of the Barnaul Forestry of the Altai Territory]. Barnaul, 2022, 129 p. Available at: https://docs.cntd.ru/document/550190366 (accessed 12.01.2023).

[27] Metody izucheniya lesnykh soobshchestv [Forest community research methods]. St. Petersburg: NIIKhimii SPbGU, 2002, 240 p.

[28] Cherepanov S.K. Sosudistye rasteniya Rossii i sopredel’nykh gosudarstv (v predelakh byvshego SSSR) [Vascular plants of Russia and neighboring countries (within the former USSR)]. St. Petersburg: Mir i sem’ya, 1995, 992 p.

[29] Alekseev V.A. Svetovoy rezhim lesa [Forest light mode]. Moscow: Nauka, 1975, 228 p.

[30] Ryazapov R.I., Kabanov S.V. Podpologovaya osveshchennost’ v starovozrastnykh sosnyakakh estestvennogo proiskhozhdeniya yuzhnoy chasti Privolzhskoy vozvyshennosti i ee vliyanie na zhiznennost’ podrosta sosny [Underground illumination in old-growth pine forests of natural origin in the southern part of the Volga Upland and its influence on the vitality of pine undergrowth]. Vestnik Altayskogo gosudarstvennogo agrarnogo universiteta [Bulletin of the Altai State Agricultural University], 2011, no. 3, pp. 54–60.

Author’s information

Malinovskikh Aleksey Anatol’evich — Cand. Sci. (Biology), Associated Professor of the Altai State Agricultural University, almaa1976@yandex.ru

ЛЕСОИНЖЕНЕРНОЕ ДЕЛО

6 РЕЗУЛЬТАТЫ ПРОИЗВОДСТВЕННОЙ ПРОВЕРКИ РУБИТЕЛЬНОГО КОМПЛЕКСА РБ-55 57–68

УДК 621.934/.936

DOI: 10.18698/2542-1468-2023-3-57-68

Шифр ВАК 4.3.4

С.Ю. Булатов1, В.Н. Нечаев1, А.Г. Сергеев2

1ГБОУ ВО «Нижегородский государственный инженерно-экономический университет» (НГИЭУ), Россия, 606340,

Нижегородская обл., г. Княгинино, ул. Октябрьская, д. 22а

2ООО «Доза-Агро», Россия, 603124, г. Нижний Новгород, ул. ш. Жиркомбината, д. 20

bulatov_sergey_urevich@mail.ru

Представлено подробное описание конструкции и принципа работы рубительного комплекса РБ-55, разработанного нижегородской фирмой и предназначенного для измельчения древесных материалов. Получены прогнозные зависимости в виде полиномы третьей степени для расчета потребляемой мощности измельчения, спрогнозирована максимальная пропускная способность рубительного комплекса при измельчении горбыля сосны влажностью 23…30 % — 9 м3/ч. Установлены максимальная пропускная способность комплекса РБ-55 при измельчении круглого лесоматериала (ель) влажностью 47,8 % — 23 м3/ч, и суммарная потребляемая мощность электродвигателей — 68,23 кВт. Установлено, что получаемая щепа соответствует марке ПС, предназначенной для изготовления древесно-стружечных плит.

Ключевые слова: измельчение, качество измельчения, пропускная способность, рубительный комплекс, энергозатраты

Ссылка для цитирования: Булатов С.Ю., Нечаев В.Н., Сергеев А.Г. Результаты производственной проверки рубительного комплекса РБ-55 // Лесной вестник / Forestry Bulletin, 2023. Т. 27. № 3. С. 57–68. DOI: 10.18698/2542-1468-2023-3-57-68

Список литературы

[1] Государственная программа Российской Федерации «Развитие промышленности и повышение ее конкурентоспособности» от 15 апреля 2014 г. URL: https:// base.garant.ru/70643464/ (дата обращения 07.08.2022).

[2] Баклагин В.Н. Обоснование технологических решений, повышающих эффективность производства щепы энергетического назначения на лесосеке: автореф. дис. … канд. техн. наук: 05.21.01. Петразоводск, 2011. 24 с.

[3] Коробов В.В., Рушнов Н.П. Переработка низкокачественного сырья (проблемы безотходной технологии). М.: Экология, 1991. 288 с.

[4] Пискунов М.А. Системы машин и себестоимость получения топливной щепы из лесосечных отходов: опыт зарубежных стран и его приложение для России // Вестник КрасГАУ, 2013. № 8. С. 238–243.

[5] ГОСТ 15815–83. Щепа технологическая. Технические условия. Введ. 01.01.85. М.: Госстандарт России, 1985. 15 с.

[6] ISO 17225-4:2021. Твердое биотопливо. Спецификации и классы топлива. Часть 4. Сортированная древесная щепа (Solid biofuels — Fuel specifications and classes – Part 4: Graded wood chips). Введ. 19.02.2021. Женева, 2021. 10 с.

[7] Галактионов О.Н. Совершенствование сквозных технологических процессов лесосечных работ с рециклингом лесосечных отходов: дис. ... д-ра техн. наук: 05.21.01: защищена: 25.03.2016. Петрозаводск, 2016. 315 с.

[8] Стратегия развития промышленности по обработке, утилизации и обезвреживанию отходов производства и потребления на период до 2030 года: Распоряжение Правительства Российской Федерации от 25 января 2018 г. № 84-р. Москва, 2018. С. 1–59. URL: https://docs.cntd.ru/document/556353696 (дата обращения 07.08.2022).

[9] Бакуров Е.В. Обработка низкотоварной древесины на комплексах лесопромышленных предприятиях // Системы. Методы. Технологии, 2019. № 2 (42). С. 100–104.

[10] Михайлов К.Л., Гущин В.А., Тараканов А.М. Организация сбора и переработки лесосечных отходов и дров на лесосеке // Лесной журнал, 2016. № 6. С. 98–109.

[11] Суханов Ю.В., Соколов А.П., Герасимов Ю.Ю. Оценка экономической эффективности систем машин для производства топливной щепы в Республике Карелия // Resources and Technology, 2013. № 10 (1). С. 1–23.

[12] Шегельман И.Р., Скрыпник В.И., Кузнецов А.В., Васильев А.С. Тенденции развития современного лесного машиностроения // Инженерный вестник Дона, 2016. № 2. С. 30.

[13] Стратегия развития лесного комплекса Российской Федерации до 2030 года от 11 февраля 2021 года №312-р. Москва, 2018. 102 с. URL: https:// docs.cntd.ru/document/573658653 (дата обращения 07.08.2022).

[14] Spinelli R., Marchi E. Trends and perspectives in the desing of mobile wood chippers // Croat. J. for. Eng., 2021, v. 42(1). DOI:10.5552/crojfe.2021.787

[15] Spinelli R., Hartsough B. A survey of Italian chipping operations // Biomass and Bioenergy, 2001, v. 21(6), pp. 433–444. https://doi.org/10.1016/S0961-9534(01)00050-2

[16] Spinelli R., Visser R.J.M. Analyzing and estimating delays in wood chipping operations // Biomass and Bioenergy, 2009, v. 33(3), pp. 429–433. https://doi.org/10.1016/j.biombioe.2008.08.003

[17] Gard Timmerfors J. Sjölund T., Jönsson L.J. New drum-chipping technology for a more uniform size distribution of wood chips // Holzforschung, 2020, v. 74(2), pp. 116–122. https://doi.org/10.1515/hf-2018-0279

[18] Фокин С.В., Ахметов Э.А. О перспективных конструкциях рубительных машин // Аграрный научный журнал, 2020. № 7. С. 85–88.

[19] Spinelli R. Cavallo E., Eliassaon L., Facello A.Comparing the efficiency of drum and disc chippers // Silva Fennica, 2013, v. 47, no. 2, article id 930. https://doi.org/10.14214/sf.930

[20] Spinelli R., Magagnotti N. A tool for productivity and cost forecasting of decentralised wood chipping // Forest Policy and Economics, 2010, v. 12(3), pp. 194–198. https://doi.org/10.1016/j.forpol.2009.10.002

[21] Spinelli R., Magagnotti N. The effect of raw material, cut length, and chip discharge on the performance of an industrial chipper // Forest Products J., 2013, v. 62(7–8), pp. 58–589. https://doi.org/10.13073/FPJ-D-12-00083.1

[22] Spinelli R., Magagnotti N. Using disposable chipper knives to decrease wood fuel processing cost // Fuel Processing Technology, 2014, v. 126, pp. 415–419. https://doi.org/10.1016/j.fuproc.2014.05.026

[23] Баранов Н.Ф., Фуфачев В.С., Ступин И.В. Определение силы затягивания материала ножом рубительной машины // Аграрная наука Евро-Северо-Востока, 2016. № 1 (50). С. 70–75.

[24] Патент № 2626172 Российская Федерация, МПК B27L 11/00. Рубительная машина / Баранов Н.Ф., Фуфачев В.С., Ступин И.В.; заявитель и патентообладатель Минсельхоз России ФГБОУ ВО «Вятская государственная сельскохозяйственная академия» / № 2015155891. Бюл. № 21. 9 с.

[25] А. с. 1782746 СССР, МПК B27L 11/00. Барабанная рубительная машина / Волков А.Я. № 4872008/15; заявл. 18.07.90; опубл. 23.12.92. Бюл. №47. 3 с.

[26] А. с. 1437230 СССР, МПК B27L 11/02. Барабанная рубительная машина для измельчения древесных отходов / Трещиков Г.М., Люкин Ю.А. № 4256231/29-15; заявл. 03.06.87; опубл. 15.11.88. Бюл. № 42. 3 с.

[27] Коробов В.В., Рушнов Н.П. Переработка низкокачественного сырья (проблемы безотходной технологии). М.: Экология, 1991. 288 с.

[28] ОСТ 13-28–74 Горбыль деловой хвойных и лиственных пород. Введ. 18.07.1974. М.: Минлесхоз, 1974. 5 с.

[29] ГОСТ 2708–75 Лесоматериалы круглые. Таблица объемов. М.: Стандартинформ, 2006. 37 с.

[30] ГОСТ 15815–83 Щепа технологическая. Технические условия. М.: Госстандарт России, 1985. 15 с.

Сведения об авторах

Булатов Сергей Юрьевич — д-р. техн. наук, доцент, профессор кафедры технического сервиса ГБОУ ВО «Нижегородский государственный инженерно-экономический университет» (НГИЭУ), bulatov_sergey_urevich@mail.ru

Нечаев Владимир Николаевич — канд. техн. наук, доцент кафедры технических и биологических систем ГБОУ ВО «Нижегородский государственный инженерно-экономический университет» (НГИЭУ), nechaev-v@list.ru

Сергеев Александр Георгиевич — канд. техн. наук, генеральный директор ООО «Доза-Агро», office@dozaagro.ru

RESULTS OF RB-55 CHOPPING COMPLEX PRODUCTION INSPECTION

S.Y. Bulatov1, V.N. Nechaev1, A.G. Sergeev2

1Nizhny Novgorod State University of Engineering and Economics (GBOU VO «NGIEU»), 22a, Oktyabrskaya st.,606340, Knyaginino, Nizhny Novgorod reg., Russia

2LLC «Dose-Agro», 20, Zhirkombinata highway st., 603124, Nizhny Novgorod, Russia

bulatov_sergey_urevich@mail.ru

A detailed description of the design and principle of the RB-55 chopping complex operation, developed at a Nizhny Novgorod company and designed for grinding wood materials, is presented. Predictive dependences in the form of a third-degree polynomial for calculating the grinding power consumption are obtained, the maximum throughput of the chopping complex is predicted when chopping pine slabwood with a humidity of 23...30 % — 9 m3/h. The maximum throughput capacity of the RB-55set for grinding round wood (spruce) with a humidity of 47,8% is 23 m3/h, and the total power consumption of electric motors is 68,23 kW. It is established that the resulting chips correspond to the brand of PS intended for the chipboard manufacture.

Keywords: grinding, grinding quality, throughput, chopping complex, energy consumption

Suggested citation: Bulatov S.Y., Nechaev V.N., Sergeev A.G. Rezul’taty proizvodstvennoy proverki rubitel’nogo kompleksa RB-55 [Results of RB-55 chopping complex production inspection]. Lesnoy vestnik / Forestry Bulletin, 2023, vol. 27, no. 3, pp. 57–68. DOI: 10.18698/2542-1468-2023-3-57-68

References

[1] Gosudarstvennaya programma Rossiyskoy Federatsii «Razvitie promyshlennosti i povyshenie ee konkurentosposobnosti» ot 15 aprelya 2014 g [The State Program of the Russian Federation «Industrial Development and Increasing its Competitiveness» dated 15 April 2014]. Available at: https://base.garant.ru/70643464/ (accessed 07.08.2022).

[2] Baklagin V.N. Obosnovanie tekhnologicheskikh resheniy, povyshayushchikh effektivnost’ proizvodstva shchepy energeticheskogo naznacheniya na lesoseke [Substantiation of technological solutions that increase the efficiency of the production of wood chips for energy purposes at the logging site: author]. Dis. Cand. Sci. (Tech.) 05.21.01. Petrazovodsk, 2011, 24 p.

[3] Korobov V.V., Rushnov N.P. Pererabotka nizkokachestvennogo syr’ya (problemy bezotkhodnoy tekhnologii) [Processing of low-quality raw materials (problems of non-waste technology)]. Moscow: Ecology, 1991, 288 p.

[4] Piskunov M.A. Sistemy mashin i sebestoimost’ polucheniya toplivnoy shchepy iz lesosechnykh otkhodov: opyt zarubezhnykh stran i ego prilozhenie dlya Rossii [Machine systems and the cost of obtaining fuel chips from logging waste: the experience of foreign countries and its application for Russia]. Vestnik KrasGAU, 2013, no. 8, pp. 238–243.

[5] GOST 15815–83 Shchepa tekhnologicheskaya. Tekhnicheskie usloviya [Chips technological. Specifications]. Introduction 01.01.85. Moscow: Gosstandart of Russia, 1985, 15 p.

[6] ISO 17225-4:2021 Tverdoe biotoplivo. Spetsifikatsii i klassy topliva. Chast’ 4. Sortirovannaya drevesnaya shchepa (Solid biofuels — Fuel specifications and classes — Part 4: Graded wood chips) [Solid biofuels. Specifications and classes of fuel. Part 4. Sorted wood chips (Solid biofuels — Fuel specifications and classes — Part 4: Graded wood chips)]. Introduction 19.02.2021. Geneva, 2021, 10 p.

[7] Galaktionov O.N. Sovershenstvovanie skvoznykh tekhnologicheskikh protsessov lesosechnykh rabot s retsiklingom lesosechnykh otkhodov [Improvement of end-to-end technological processes of logging operations with recycling of logging waste]. Dis. Dr. Sci. (Tech.) 05.21.01, 2015, 315 p.

[8] Strategiya razvitiya promyshlennosti po obrabotke, utilizatsii i obezvrezhivaniyu otkhodov proizvodstva i potrebleniya na period do 2030 goda ot 25 yanvarya 2018 g. № 84-r. [Strategy for the development of industry for the processing, recycling and disposal of production and consumption waste for the period up to 2030 dated 25 january 2018 no. 84-r.] Moscow, 2018. Available at: https://docs.cntd.ru/document/556353696 (accessed 07.08.2022).

[9] Bakurov E.V. Obrabotka nizkotovarnoy drevesiny na kompleksakh lesopromyshlennykh predpriyatiyakh [Processing of low-value wood at the complexes of timber industry enterprises]. Sistemy Metody Tekhnologii [Systems Methods of Technology], 2019, no. 2 (42), pp. 100–104.

[10] Mikhaylov K.L., Gushchin V.A., Tarakanov A.M. Organizatsiya sbora i pererabotki lesosechnykh otkhodov i drov na lesoseke [Organization of collection and processing of logging waste and firewood at the logging site]. Lesnoy Zhurnal (Russian Forestry Journal), 2016, no. 6, pp. 98–109.

[11] Sukhanov Yu.V., Sokolov A.P., Gerasimov Yu.Yu. Otsenka ekonomicheskoy effektivnosti sistem mashin dlya proizvodstva toplivnoy shchepy v Respublike Kareliya [Evaluation of the economic efficiency of machine systems for the production of fuel chips in the Republic of Karelia]. Resources and Technology [Resources and Technology], 2013, no. 10 (1), pp. 1–23.

[12] Shegel’man I.R., Skrypnik V.I., Kuznetsov A.V., Vasil’ev A.S. Tendentsii razvitiya sovremennogo lesnogo mashinostroeniya [Trends in the development of modern forestry engineering]. Inzhenernyy vestnik Dona [Engineering Bulletin of the Don], 2016, no. 2, p. 30.

[13] Strategiya razvitiya lesnogo kompleksa Rossiyskoy Federatsii do 2030 goda ot 11 fevralya 2021 goda №312-r. [Strategy for the development of the forest complex of the Russian Federation until 2030 dated February 11, 2021 No. 312-r]. Moscow, 2018, 102 p. Available at: https://docs.cntd.ru/document/573658653 (accessed 07.08.2022).

[14] Spinelli R., Marchi E. Trends and perspectives in the desing of mobile wood chippers. Croat. J.for. Eng., 2021, v. 42(1). DOI:10.5552/crojfe.2021.787

[15] Spinelli R., Hartsough B. A survey of Italian chipping operations. Biomass and Bioenergy, 2001, v. 21(6), pp. 433–444. https://doi.org/10.1016/S0961-9534(01)00050-2

[16] Spinelli R., Visser R.J.M. Analyzing and estimating delays in wood chipping operations. Biomass and Bioenergy, 2009, v. 33(3), pp. 429–433. https://doi.org/10.1016/j.biombioe.2008.08.003

[17] Gard Timmerfors J. Sjölund T., Jönsson L.J. New drum-chipping technology for a more uniform size distribution of wood chips. Holzforschung, 2020, v. 74(2), pp. 116–122. https://doi.org/10.1515/hf-2018-0279

[18] Fokin S.V., Akhmetov E.A. O perspektivnykh konstruktsiyakh rubitel’nykh mashin [On promising designs of chippers]. Agrarnyy nauchnyy zhurnal [Agrarian scientific journal], 2020, no. 7, pp. 85–88.

[19] Spinelli R. Cavallo E., Eliassaon L., Facello A. Comparing the efficiency of drum and disc chippers. Silva Fennica, 2013, v. 47, no. 2, article id 930. https://doi.org/10.14214/sf.930

[20] Spinelli R., Magagnotti N. A tool for productivity and cost forecasting of decentralized wood chipping. Forest Policy and Economics, 2010, v. 12(3), pp. 194–198. https://doi.org/10.1016/j.forpol.2009.10.002

[21] Spinelli R., Magagnotti N. The effect of raw material, cut length, and chip discharge on the performance of an industrial chipper. Forest Products J., 2013, v. 62(7–8), pp. 58–589. https://doi.org/10.13073/FPJ-D-12-00083.1

[22] Spinelli R., Magagnotti N. Using disposable chipper knives to decrease wood fuel processing cost. Fuel Processing Technology, 2014, v. 126, pp. 415–419. https://doi.org/10.1016/j.fuproc.2014.05.026

[23] Baranov N.F., Fufachev V.S., Stupin I.V. Opredelenie sily zatyagivaniya materiala nozhom rubitel’noy mashiny [Determination of the pulling force of the material by the knife of the chipper]. Agrarnaya nauka Evro-Severo-Vostoka [Agrarian science of the Euro-North-East], 2016, no. 1 (50), pp. 70–75.

[24] Baranov N.F., Fufachev V. S., Stupin I. V. Rubitel’naya mashina [Chipping machine]. Patent 2626172 RF, MPK B27L 11/00. / № 2015155891. Zayavitel’ i patentoobladatel’ Ministerstvo sel’skogo khozyaystva Rossiyskoy Federatsii Federal’noe gosudarstvennoe byudzhetnoe obrazovatel’noe uchrezhdenie vysshego obrazovaniya «Vyatskaya gosudarstvennaya sel’skokhozyaystvennaya akademiya» [Patent 2626172 RF, IPC B27L 11/00. No. 2015155891. Applicant and patent holder Ministry of Agriculture of the Russian Federation Federal State Budgetary Educational Institution of Higher Education «Vyatka State Agricultural Academy»]. Bull. no. 21, 9 p.

[25] Volkov A.Ya. Barabannaya rubitel’naya mashina [Drum chipper]. A. s. 1782746 SSSR, MPK B27L 11/00. № 4872008/15 [Certificate of authorship 1782746 USSR, IPC B27L 11/00, no. 4872008/15], Appl. 18.07.90; publ. 23.12.92, bull. no. 47, 3 p.

[26] Treshchikov G.M., Lyukin Yu.A. Barabannaya rubitel’naya mashina dlya izmel’cheniya drevesnykh otkhodov [Drum chipper for wood waste shredding]. A. s. 1437230 SSSR, MPK B27L 11/02. № 4256231/29-15 [Certificate of authorship 1437230 USSR, IPC B27L 11/02, no. 4256231/29-15]. Appl. 03.06.87; publ. 15.11.88, bull. no. 42, 3 p.

[27] Korobov V.V., Rushnov N.P. Pererabotka nizkokachestvennogo syr’ya (problemy bezotkhodnoy tekhnologii) [Processing of low-quality raw materials (problems of non-waste technology)]. Moscow: Ecology, 1991, 288 p.

[28] OST 13-28–74 Gorbyl’ delovoy khvoynykh i listvennykh porod [Business slab of coniferous and hardwood species]. Introduction 18.07.1974. Moscow: Minleskhoz, 1974, 5 p.

[29] GOST 2708–75 Lesomaterialy kruglye. Tablitsa ob’emov [Round timber. Volume table]. Moscow: Standartinform, 2006, 37 p.

[30] GOST 15815–83 Shchepa tekhnologicheskaya. Tekhnicheskie usloviya [Technological chips. Specifications]. Moscow: Gosstandart of Russia, 1985, 15 p.

Authors’ information

Bulatov Sergey Yur’evich — Dr. Sci. (Tech.), Associate Professor, Professor of the Department of Technical Service of the Nizhny Novgorod State University of Engineering and Economics, bulatov_sergey_urevich@mail.ru

Nechaev Vladimir Nikolaevich — Cand. Sci. (Tech.), Associate Professor of the Department of Technical and Biological Systems of the Nizhny Novgorod State University of Engineering and Economics, nechaev-v@list.ru

Sergeev Aleksandr Georgievich — Cand. Sci. (Tech.), General Director of Doza-Agro LLC, office@dozaagro.ru

7 ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ЗАГОТОВКИ ДРЕВЕСИНЫ НА ПРИМЕРЕ ЛЕСНОГО ХАРВЕСТЕРА 69–80

УДК 004.94: 630.3

DOI: 10.18698/2542-1468-2023-3-69-80

Шифр ВАК 4.3.4

К.П. Рукомойников, Т.В. Сергеева, Т.А. Гилязова, Е.М. Царев, П.Н. Анисимов

ФГБОУ ВО «Поволжский государственный технологический университет», Институт леса и природопользования, Россия, 424000, Республика Марий Эл, г. Йошкар-Ола, пл. Ленина, д. 3

rukomojnikovkp@volgatech.net

Целью работы было создание компьютерной модели, позволяющей воспроизвести технологический процесс лесозаготовки с учетом огромного количества всевозможных условий, способных повлиять на конечный результат работы предприятия, получить данные, необходимые для принятия эффективных управленческих и организационных решений по нормированию труда и подготовке нормативной документации. Для этого с помощью метода агентного моделирования в программе AnyLogic была создана имитационная модель производственного процесса. Функционирование предложенной модели осуществляется на основе значимых статистических данных о наиболее важных характеристиках отдельных элементов производственного процесса. В статье приведена демонстрация возможностей моделирования технологических схем работы на лесосеке на этапе проектирования технологической карты без необходимости реальной рубки лесных насаждений. Представлена диаграмма состояний работы харвестера, заложенная в созданную авторами имитационную модель, позволяющая исследователю провести пошаговый анализ работы лесозаготовительной машины. Показана информационно логическая детализация всех блоков диаграммы состояний работы харвестера, позволяющая понять принцип анализа при расчистке площадки для новой рабочей позиции, анализа доступности деревьев на пасеках, обработки стволов деревьев с учетом всех перемещений и организационно-технических простоев в процессе освоения лесосек. Представлена графическая демонстрация выбора деревьев доступных для валки, а также анализа ситуации для перемещения на новую рабочую позицию харвестера. Изложена последовательность ввода данных в модель и принципы фиксации полученных на основе моделирования научных результатов. Созданная имитационная модель позволит лесопользователям осуществлять: сравнение вариантов технологических схем движения харвестера по лесосеке с выбором наилучших организационных и управленческих решений; создание нормативов трудозатрат и нормативов выработки при разработке лесосек в любых природно-производственных условиях для любой модели используемого харвестера в зависимости от вида рубок и породно-качественных характеристик вырубаемых деревьев.

Ключевые слова: имитационное моделирование, программное обеспечение, лесозаготовка, лесосека, технологическая карта

Ссылка для цитирования: Рукомойников К.П., Сергеева Т.В., Гилязова Т.А., Царев Е.М., Анисимов П.Н. Имитационное моделирование технологического процесса заготовки древесины на примере лесного харвестера // Лесной вестник / Forestry Bulletin, 2023. Т. 27. № 3. С. 69–80. DOI: 10.18698/2542-1468-2023-3-69-80

Список литературы

[1] Рукомойников К.П., Мохирев А.П. Обоснование технологической схемы лесозаготовительных работ путем создания динамической модели функционирования предприятия // ИзВУЗ Лесной журнал, 2019. № 4. С. 94–107. DOI: 10.17238/issn 0536-1036.2019.4.94

[2] Mokhirev A., Rukomojnikov К., Gerasimova М., Medvedev S. Finding an effective technological chain of the logging process in the natural and production conditions of the Krasnoyarsk region // IOP Conference Series: Materials Science and Engineering, 817 (1), 2020, р. 012025. DOI:10.1088/1757-899X/817/1/012025

[3] Gerasimov Y., Sokolov A., Fjeld D. Improving cut-to-length operations management in Russian logging companies using a new decision support system // Baltic Forestry, 2013, vol. 19, no. 1, pp. 89–105.

[4] Khitrov E.G., Andronov A.V. Mathematical model of interaction between forest machine’s rover and strengthening soil // IOP Conf. Series: J. of Physics: Conf. Series 1108, 2018. DOI:10.1088/1742-6596/1177/1/012030

[5] Шегельман И.Р., Васильев А.С. Использование базы знаний как инструмента синтеза патентоспособных решений, повышающих эффективность возобновления леса сеянцами и саженцами лесных культур // Инженерный вестник Дона, 2020. № 7 (67). С. 206–215.

[6] Рукомойников К.П., Сергеева Т.В., Гилязова Т.А., Волдаев М.Н., Царев Е.М., Анисимов С.Е. Компьютерная симуляция разработки лесосек с использованием валочно-сучкорезно-раскряжевочных машин // Системы. Методы. Технологии, 2022. № 2 (54). С. 108–113.

[7] Рукомойников К.П., Купцова В.О. Обоснование норм расхода топлива многооперационных лесозаготовительных машин на примере харвестера // ИзВУЗ Лесной журнал, 2020. № 3(375). С. 117–127. DOI 10.37482/0536-1036-2020-3-117-127

[8] Mokhirev A., Gerasimova M., Pozdnyakova M. Finding the optimal route of wood transportation // IOP Conference Series: Earth and Environmental Science, 2019, v. 226, p. 012053. DOI: 10.1088/1755-1315/226/1/012053

[9] Gerasimov Y.Y., Sokolov A.P., Karjalainen T. GIS-based decision-support program for planning and analyzing short-wood transport in Russia // Croatian J. of Forest Engineering, 2008, v. 29, iss. 2, pp. 163–175.

[10] Пильник Ю.Н. Методы и алгоритмы синтеза организационных структур формирования сетевых грузопотоков лесоматериалов многоуровневых транспортно-технологических систем: дис. … д-ра техн. наук: 05.21.01. Воронеж, 2019. 340 с.

[11] Иванников В.А. Совершенствование системы формирования грузопотоков лесоматериалов на смежных видах транспорта: дис. … д-ра техн. наук: 05.21.01. Воронеж, 2019. 340 с.

[12] Герасимов Ю.Ю., Катаров В.К., Ковалёва Н.В., Рожин Д.В., Соколов А.П., Сюнёв В.С. Совершенствование системы оптимального проектирования сети лесных автомобильных дорог // Ученые записки Петрозаводского государственного университета, 2013. № 8 (137). С. 70–76.

[13] Соколов А.П. Комплексное освоение лесосырьевых баз: обоснование технологий и параметров процессов на основе логистического подхода: дис. … д-ра техн. наук: 05.21.01. Петрозаводск, 2015. 329 с.

[14] Соколов А.П., Осипов Е.В. Имитационное моделирование производственного процесса заготовки древесины с помощью сетей Петри // Лесотехнический журнал, 2017. Т. 7. № 3 (27). С. 307–314. DOI: 10.12737/article_59c2140d704ae5.63513712

[15] Мохирев А.П. Обоснование доступности древесных ресурсов путем моделирования структуры лесотранспортных потоков (на примере Красноярского края РФ): дис. … д-ра техн. наук: 05.21.01. Красноярск, 2021. 402 с.

[16] Куницкая О.А., Чернуцкий Н.А., Дербин М.В., Рудов С.Е., Григорьев И.В., Григорьева О.И. Машинная заготовка древесины по скандинавской технологии. СПб.: Издательско-полиграфическая ассоциация высших учебных заведений, 2019. 192 с.

[17] Лаурила Я., Кучин А.В., Лебедев В.Д. Лесозаготовительные машины PONSSE. Архангельск: Изд-во И.А. Васильев, 2020. 144 с.

[18] Будник П.В. Синтез технико-технологических решений комплексного освоения ресурсов древесины: обоснование технологий и параметров процессов на основе логистического подхода: дис. … д-ра техн. наук: 05.21.01. Петрозаводск, 2021. 469 с.

[19] Национальное общество имитационного моделирования URL: http://simulation.su/ru.html (дата обращения 01.12.2021).

[20] Yaoxiang Li. Modeling operational forestry problems in central Appalachian hardwood forests. Graduate Theses, Dissertations, and Problem Reports, 2005, 4166, 144 p. URL: https://researchrepository.wvu.edu/etd/4166 (дата обращения 18.02.2022).

[21] Sängstuvall L., Bergström D., Lämås T., Nordfjell T. Simulation of harvester productivity in selective and boom-corridor thinning of young forests. Scandinavian Journal of Forest Research, 2012, v. 27, no. 1, pp. 56–73. URL: http://dx.doi.org/10.1080/02827581.2011.628335 (дата обращения 16.02.2022).

[22] Суханов Ю.В., Селиверстов А.А., Соколов А.П., Сюнев В.С. Имитационное моделирование работы харвестера: алгоритмы и реализация // Уч. зап. Петрозаводского государственного университета, 2012. № 8–2(129). С. 49–51.

[23] Ovaskainen H. Timber harvester operators’ working technique in first thinning and the importance of cognitive abilities on work productivity. Dissertationes Forestales, 2009, 79 p. URL: http://www.metla.fi/dissertationes/df79.htm (дата обращения 28.02.2022).

[24] The AnyLogic Company. URL: https://www.anylogic.ru/ (дата обращения 25.02.2022).

[25] Boero R., Morini M., Sonnessa M., Terna P. Agent-based models of the Economy: from theories to applications. London: Palgrave Macmillan, 2015. 232 p.

[26] Кочегаров В.Г., Бит Ю.А., Меньшиков В.Н. Технология и машины лесосечных работ. М.: Лесная пром-сть, 1990. 392 с.

[27] Рукомойников К.П., Сергеева Т.В., Гилязова Т.А., Царев Е.М. Анисимов С.Е., Комисар В.П. Программа моделирования работы харвестера. Свидетельство о государственной регистрации компьютерной программы, №2022614531, РФ, 2022.

Сведения об авторах

Рукомойников Константин Павлович — д-р техн. наук, профессор кафедры лесопромышленных и химических технологий Института леса и природопользования ФГБОУ ВО «Поволжский государственный технологический университет», rukomojnikovkp@volgatech.net

Сергеева Татьяна Владиславовна — аспирант Института леса и природопользования ФГБОУ ВО «Поволжский государственный технологический университет», sergeeva2010t@mail.ru

Гилязова Татьяна Аркадьевна — аспирант Института леса и природопользования ФГБОУ ВО «Поволжский государственный технологический университет», tat-gilyazova@yandex.ru

Царев Евгений Михайлович — д-р техн. наук, профессор кафедры лесопромышленных и химических технологий Института леса и природопользования ФГБОУ ВО «Поволжский государственный технологический университет», CarevEM@volgatech.net

Анисимов Павел Николаевич — канд. техн. наук, доцент кафедры энергообеспечения предприятий ФГБОУ ВО «Поволжский государственный технологический университет», AnisimovPN@volgatech.net

MODELING OPERATION OF FOREST HARVESTER IN ANYLOGIC SIMULATION SYSTEM

K.P. Rukomoynikov, T.V. Sergeeva, T.A. Gilyazova, E.M. Tsarev, P.N. Anisimov

Volga State University of Technology, 3, Lenin Square, 424000, Yoshkar-Ola, Republic of Mari El, Russia

rukomojnikovkp@volgatech.net

The purpose of the work is to create a computer model that allows to reproduce the technological process of logging, taking into account a huge number of various conditions that can affect the final result of the enterprise, to obtain the data necessary for making effective managerial and organizational decisions on labor standardization and the preparation of regulatory documentation. To do this, using the agent-based modeling method, a simulation model of the production process was created in the AnyLogic program. The functioning of the proposed model is carried out on the basis of significant statistical data on the most important characteristics of individual elements of the production process. The article demonstrates the possibilities of modeling technological schemes of work at the cutting site at the design stage of the technological map without the need for real felling of forest plantations. The diagram of the conditions of the harvester’s work is presented, embedded in the simulation model created by the authors, which allows the researcher to conduct a step-by-step analysis of the work of the logging machine. An information-logical detailing of all blocks of the harvester work state diagram is shown, which allows understanding the principle of analysis when clearing the site for a new working position, analyzing the availability of trees in apiaries, processing of tree trunks, taking into account all movements and organizational and technical downtime in the process of developing forest cuttings. The reader is presented with a graphical demonstration of the choice of trees available for felling, as well as an analysis of the situation for moving to a new working position of the harvester. The sequence of data entry into the model and the principles of fixing the scientific results obtained on the basis of modeling are outlined. The created simulation model will allow forest users to compare the options for the technological schemes of the harvester's movement along the forest cutting with the choice of the best organizational and management solutions; creation of labor standards and production standards for the development of forest cuttings in any natural and production conditions for any model of the harvester used, depending on the type of felling and the species and quality characteristics of the felled trees.

Keywords: simulation, software, logging, felling area, chart

Suggested citation: Rukomoynikov K.P., Sergeeva T.V., Gilyazova T.A., Tsarev E.M., Anisimov P.N. Imitatsionnoe modelirovanie tekhnologicheskogo protsessa zagotovki drevesiny na primere lesnogo kharvestera [Modeling operation of forest harvester in AnyLogic simulation system]. Lesnoy vestnik / Forestry Bulletin, 2023, vol. 27, no. 3, pp. 69–80. DOI: 10.18698/2542-1468-2023-3-69-80

References

[1] Rukomoynikov K.P., Mokhirev A.P. Obosnovanie tekhnologicheskoy skhemy lesozagotovitel’nykh rabot putem sozdaniya dinamicheskoy modeli funktsionirovaniya predpriyatiya [Substantiation of the technological scheme of logging operations by creating a dynamic model of the functioning of the enterprise]. Lesnoy Zhurnal (Russian Forestry Journal), 2019, no. 4, pp. 94–107. DOI: 10.17238/issn 0536-1036.2019.4.94

[2] Mokhirev A., Rukomojnikov К., Gerasimova М., Medvedev S. Finding an effective technological chain of the logging process in the natural and production conditions of the Krasnoyarsk region. IOP Conference Series: Materials Science and Engineering, 817 (1), 2020, р. 012025. DOI:10.1088/1757-899X/817/1/012025

[3] Gerasimov Y., Sokolov A., Fjeld D. Improving cut-to-length operations management in Russian logging companies using a new decision support system. Baltic Forestry, 2013, vol. 19, no. 1, pp. 89–105.

[4] Khitrov E.G., Andronov A.V. Mathematical model of interaction between forest machine’s rover and strengthening soil. IOP Conf. Series: J. of Physics: Conf. Series 1108, 2018. DOI:10.1088/1742-6596/1177/1/012030

[5] Shegel’man I.R., Vasil’ev A.S. Ispol’zovanie bazy znaniy kak instrumenta sinteza patentosposobnykh resheniy, povyshayushchikh effektivnost’ vozobnovleniya lesa seyantsami i sazhentsami lesnykh kul’tur [Using the knowledge base as a tool for the synthesis of patentable solutions that increase the efficiency of reforestation with seedlings and saplings of forest crops]. Inzhenernyy vestnik Dona [Engineering Bulletin of the Don], 2020, no. 7 (67), pp. 206–215.

[6] Rukomoynikov K.P., Sergeeva T.V., Gilyazova T.A., Voldaev M.N., Tsarev E.M., Anisimov S.E. Komp’yuternaya simulyatsiya razrabotki lesosek s ispol’zovaniem valochno-suchkorezno-raskryazhevochnykh mashin [Computer simulation of the development of cutting areas using felling-lopping-cutting machines]. Sistemy. Metody. Tekhnologii [Systems. Methods. Technologies], 2022, no. 2 (54), pp. 108–113.

[7] Rukomojnikov K., Kuptcova V. Substantiation of Fuel Consumption Rates of a Harvester. Lesnoy Zhurnal [Russian Forestry Journal], 2020, no. 3, pp. 117–127. DOI: 10.37482/0536-1036-2020-3-117-127

[8] Mokhirev A., Gerasimova M., Pozdnyakova M. Finding the optimal route of wood transportation. IOP Conference Series: Earth and Environmental Science, 2019, v. 226, p. 012053. DOI: 10.1088/1755-1315/226/1/012053

[9] Gerasimov Y.Y., Sokolov A.P., Karjalainen T. GIS-based decision-support program for planning and analyzing short-wood transport in Russia. Croatian J. of Forest Engineering, 2008, v. 29, iss. 2, pp. 163–175.

[10] Pil’nik Yu.N. Metody i algoritmy sinteza organizatsionnykh struktur formirovaniya setevykh gruzopotokov lesomaterialov mnogourovnevykh transportno-tekhnologicheskikh sistem [Methods and algorithms for the synthesis of organizational structures for the formation of network cargo flows of timber in multilevel transport and technological systems]. Dis. Dr. Sci. (Tech.) 05.21.01. Voronezh, 2019, 340 p.

[11] Ivannikov V.A. Sovershenstvovanie sistemy formirovaniya gruzopotokov lesomaterialov na smezhnykh vidakh transporta [Improving the system of formation of cargo flows of timber on adjacent modes of transport]. Dis. Dr. Sci. (Tech.) 05.21.01. Voronezh, 2019, 340 p.

[12] Gerasimov Yu.Yu., Katarov V.K., Kovaleva N.V., Rozhin D.V., Sokolov A.P., Syunev V.S. Sovershenstvovanie sistemy optimal'nogo proektirovaniya seti lesnykh avtomobil'nykh dorog [Improving the system of optimal design of the network of forest roads]. Uchenye zapiski Petrozavodskogo gosudarstvennogo universiteta [Uchenye zapiski Petrozavodskogo gosudarstvennogo universiteta], 2013, no. 8 (137), pp. 70–76.

[13] Sokolov A.P. Kompleksnoe osvoenie lesosyr’evykh baz: obosnovanie tekhnologiy i parametrov protsessov na osnove logisticheskogo podkhoda [Comprehensive development of timber bases: substantiation of technologies and process parameters based on a logistic approach]. Dis. Dr. Sci. (Tech.) 05.21.01. Petrozavodsk, 2015, 329 p.

[14] Sokolov A.P., Osipov E.V. Imitatsionnoe modelirovanie proizvodstvennogo protsessa zagotovki drevesiny s pomoshch’yu setey Petri [Simulation modeling of the production process of wood harvesting using Petri nets]. Lesnoy Zhurnal (Russian Forestry Journal), 2017, v. 7, no. 3 (27), pp. 307–314. DOI: 10.12737/article_59c2140d704ae5.63513712

[15] Mokhirev A.P. Obosnovanie dostupnosti drevesnykh resursov putem modelirovaniya struktury lesotransportnykh potokov (na primere Krasnoyarskogo kraya RF) [Justification of the availability of wood resources by modeling the structure of forest transport flows (on the example of the Krasnoyarsk Territory of the Russian Federation)]. Dis. Dr. Sci. (Tech.) 05.21.01. Krasnoyarsk, 2021, 402 p.

[16] Kunitskaya O.A., Chernutskiy N.A., Derbin M.V., Rudov S.E., Grigor’ev I.V., Grigor’eva O.I. Mashinnaya zagotovka drevesiny po skandinavskoy tekhnologii [Machine harvesting of wood according to Scandinavian technology]. St. Petersburg: Publishing and Printing Association of Higher Educational Institutions, 2019, 192 p.

[17] Laurila Ya., Kuchin A.V., Lebedev V.D. Lesozagotovitel’nye mashiny PONSSE [PONSSE forestry machines]. Arkhangelsk: I.A. Vasiliev Publishing House, 2020, 144 p.

[18] Budnik P.V. Sintez tekhniko-tekhnologicheskikh resheniy kompleksnogo osvoeniya resursov drevesiny: obosnovanie tekhnologiy i parametrov protsessov na osnove logisticheskogo podkhoda [Synthesis of technical and technological solutions for the integrated development of wood resources: substantiation of technologies and process parameters based on a logistic approach]. Dis. Dr. Sci. (Tech.) 05.21.01. Petrozavodsk, 2021, 469 p.

[19] Natsional’noe obshchestvo imitatsionnogo modelirovaniya [National Society for Simulation]. Available at: http://simulation.su/ru.html (accessed 01.12.2021).

[20] Yaoxiang Li. Modeling operational forestry problems in central Appalachian hardwood forests. Graduate Theses, Dissertations, and Problem Reports, 2005, 4166, 144 p. Available at: https://researchrepository.wvu.edu/etd/4166 (accessed 18.02.2022).

[21] Sängstuvall L., Bergström D., Lämås T., Nordfjell T. Simulation of harvester productivity in selective and boom-corridor thinning of young forests. Scandinavian Journal of Forest Research, 2012, v. 27, no. 1, pp. 56–73. Available at: http://dx.doi.org/10.1080/02827581.2011.628335 (accessed 16.02.2022).

[22] Sukhanov Yu.V., Seliverstov A.A., Sokolov A.P., Syunev V.S. Imitatsionnoe modelirovanie raboty kharvestera: algoritmy i realizatsiya [Simulation modeling of the harvester operation: algorithms and implementation]. Uchenye zapiski Petrozavodskogo gosudarstvennogo universiteta, 2012, no. 8–2(129), pp. 49–51.

[23] Ovaskainen H. Timber harvester operators’ working technique in first thinning and the importance of cognitive abilities on work productivity. Dissertationes Forestales, 2009, 79 p. Available at http://www.metla.fi/dissertationes/df79.htm (accessed 28.02.2022).

[24] The AnyLogic Company. Available at: https://www.anylogic.ru/ (accessed 25.02.2022).

[25] Boero R., Morini M., Sonnessa M., Terna P. Agent-based models of the Economy: from theories to applications. London: Palgrave Macmillan, 2015. 232 p.

[26] Kochegarov V.G., Bit Yu.A., Men’shikov V.N. Tekhnologiya i mashiny lesosechnykh rabot [Technology and machines of logging operations]. Moscow: Lesnaya prom-st’, 1990, 392 p.

[27] Rukomoynikov K.P., Sergeeva, T.V., Gilyazova, T.A., Tsarev E.M., Anisimov S.E., Komisar V.P. Programma modelirovaniya raboty harvestera [Harvester Simulation Program]. Certificate of state registration of the computer program, no. 2022614531, Russian Federation, 2022.

Authors’ information

Rukomoynikov Konstantin Pavlovich — Dr. Sci. (Tech.), Professor of the Department of Forestry and chemical technologies of the Institute of forest and nature management, Volga State University of Technology, rukomojnikovkp@volgatech.net

Sergeeva Tat’yana Vladislavovna — pg., Volga State University of Technology, sergeeva2010t@mail.ru

Gilyazova Tat’yana Arkad’evna — pg., Volga State University of Technology, tat-gilyazova@yandex.ru

Tsarev Evgeniy Mikhaylovich — Dr. Sci. (Tech.), Professor of the Department of Forestry and chemical technologies of the Institute of forest and nature management, Volga State University of Technology, CarevEM@volgatech.net

Anisimov Pavel Nikolaevich — Cand. Sci. (Tech.), Associate Professor of the Department of Energy Supply of Enterprises, Volga State University of Technology, AnisimovPN@volgatech.net

8 МОДЕЛИРОВАНИЕ ТЕХНОЛОГИИ ОЧИСТКИ ЛЕСА С ПОМОЩЬЮ МНОГООПЕРАЦИОННОЙ МАШИНЫ 81–90

УДК 630.3

DOI: 10.18698/2542-1468-2023-3-81-90

Шифр ВАК 4.3.4

С.П. Карпачев, М.А. Быковский

ФГБОУ ВО «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)», Мытищинский филиал, Россия, 141005, Московская обл., г. Мытищи, ул. 1-я Институтская, д. 1

karpachevs@mail.ru

Представлена концептуальная модель лесной многооперационной машины для уборки захламленности, вызванной естественным отпадом деревьев. Рассмотрен технологический процесс санитарной очистки леса, минимизирующий ручной труд с помощью машины и лебедки, в том числе технология уборки отпада с переработкой его на дрова в лесу. Приведено два варианта работы многооперационной машиной совместно с лебедкой: последовательная, когда машина перерабатывает древесину отпада по мере поступления ее от лебедки и параллельная, когда лебедка и машина работают независимо друг от друга. Установлено, что производительность на уборке захламленности при параллельной работе машины и лебедки выше на 7…14 %, чем при их последовательной работе. Выявлено, что производительность многооперационной машины при параллельной работе машины и лебедки возрастает на 53…55 %. Определено, что загрузка машины, при совместной работе с лебедкой, составляет менее 50 % рабочего времени. Рекомендована совместная работа лебедки и машины при близких производительностях, в случае если производительность лебедки сильно отличается от производительности машины, то они должны работать раздельно.

Ключевые слова: естественный отпад в лесу, лесная многооперационная машина, лебедка, дрова, имитационное моделирование, математическая модель

Ссылка для цитирования: Карпачев С.П., Быковский М.А. Моделирование технологии очистки леса с помощью многооперационной машины // Лесной вестник / Forestry Bulletin, 2023. Т. 27. № 3. С. 81–90. DOI: 10.18698/2542-1468-2023-3-81-90

Список литературы

[1] Шелгунов Ю.В. Машины и оборудование лесозаготовок, лесосплава и лесного хозяйства. М.: Лесная промышленность, 1982. 520 с.

[2] Spinelli R., Hartsough B. A survey of Italian chipping operations // Biomass and Bioenergy, 2001, v. 21(6), pp. 433–444.

[3] Ширнин Ю.А. Технология и оборудование лесопромышленных производств. Ч. 1. Лесосечные работы. М.: МГУЛ, 2004. 445 с.

[4] Eliasson L., von Hofsten H., Johannesson T., Spinelli R., Thierfelder T. Effects of sieve size on chipper productivity, fuel consumption and chip size distribution for open drum chippers // Croatian J. of Forest Engineering, 2015, v. 36(1), pp. 11–17.

[5] Mihelic M., Spinelli R., Poje A. Production of Wood Chips from Logging Residue under Space-Constrained Conditions // Croatian J. of Forest Engineering, 2018, v. 39(2), pp. 223–232.

[6] Виногоров Г.К. Лесосечные работы. М.: Лесная пром-сть, 1981. 272 с.

[7] Karpachev S.P., Bykovskiy M.A. Universal tractor processor for working in forests of different ages // IOP Conf. Series: Earth and Environmental Science,2020, v. 574 (1), no. at. 012037. DOI:10.1088/1755-1315/574/1/012037

[8] Салминен Э.О., Гуров С.В., Большаков Б.М. Размещение волоков на заболоченных участках // Лесная промышленность, 1988. № 3. С. 32–33.

[9] Барановский В.А., Некрасов Р.М. Системы машин для лесозаготовок. М.: Лесная пром-ть, 1977. 248 с.

[10] Magagnotti N., Spinelli R. Good practice guidelines for biomass production studies; WG2 Operations research and measurement methodologies. Sesto Fiorentino, Italy: COST Action FP-0902 and CNR Ivalsa, 2012, 52 p.

[11] Рыжков А.Е., Проказин Н.Е. Система добровольной лесной сертификации PEFC-FCR, оценка лесоуправления, лесопользования и цепочки поставок лесопродукции на соответствие международным требованиям. М.: PEFCFCR, 2016. 254 с.

[12] Spinelli R., Nati C., Magagnotti N. Recovering logging residue: experiences from the Italian Eastern Alps // Croatian J. of Forest Engineering, 2007, v. 28(1), pp. 1–9.

[13] Григорьев И.В., Жукова А.И. Координатно-объемная методика трассирования при освоении лесосек трелевкой // ИЗВУЗ Лесной журнал, 2004. No 4. С. 40–44.

[14] Gerasimov Y., Karjalainen T. Energy wood resources in Northwest Russia // Biomass and Bioenergy, 2011, no. 35, pp. 1655–1662.

[15] Esteban B., Baquero G., Puig R., Riba J.R., Rius A. Is it environmentally advantageous to use vegetable oil directly as biofuel instead of converting it to biodiesel? // Biomass Bioenergy, 2011, no. 35, pp. 1317–1328. Available at: https://doi.org/10.1016/j.biombioe.2010.12.025 (дата обращения 01.02.2022).

[16] Сюнев В.С. Сравнение технологий лесосечных работ в лесозаготовительных компаниях Республики Карелия. Йоенсуу: НИИ леса Финляндии METLA, 2008. 126 с.

[17] Макаренко А.В., Быковский М.А., Лаптев А.В. Эффективность выполнения технологических операций при проведении выборочных рубок леса // Актуальные проблемы развития лесного комплекса. Материалы 13-й Междунар. науч.-техн. конф., 01–02 декабря 2015 г., Вологда. Вологда: Изд-во ВГТУ, 2016. С. 32–37.

[18] Григорьев И.В., Жукова А.И., Григорьева О.И., Иванов А.В. Средощадящие технологии разработки лесосек в условиях северо-западного региона Российской Федерации. СПб.: Изд-во СПбГЛТА, 2008. 174 с.

[19] Герц Э.Ф. Оценка технологии лесопользования на лесосечных работах. Екатеринбург: Изд-во УГЛТУ, 2003. 120 с.

[20] Макаренко А.В. Оптимизация размещения сети трелевочных волоков на лесосеке // Лесозаготовительное производство: проблемы и решения. Материалы Междунар. науч.-техн. конф., 26–28 апреля 2017 г., Минск. Минск: Изд-во БГТУ, 2017. С. 233–237.

[21] Галактионов О.Н. Технологический процесс лесозаготовок и ресурсы лесосечных отходов. Петрозаводск: Изд-во ПетрГУ, 2007. 95 с.

[22] Кузнецов В.И. Представляем фирму «Лестехком» — новое качество лесозаготовительной техники // Лесная промышленность, 2006, № 1. С. 12–14.

[23] Пискунов М.А. Распределение проходов форвардера и построение оптимальных схем расположения трелевочных волоков на лесосеке // Вестник Поволжского государственного технологического университета. Сер. Лес. Экология. Природопользование, 2017. № 2 (34). С. 37–48.

[24] Григорьев И.В. Снижение отрицательного воздействия на почву колесных тракторов обоснованием режимов их движения и технологического оборудования. СПб.: Изд-во СПбГЛТА, 2006. 236 с.

[25] Дербин В.М., Дербин М.В. Технология работы харвестера при выборочных рубках // Лесотехнический журнал, 2016. № 2. С. 69–75. DOI: 10.12737/19956

[26] Naarva S23. URL: https://www.pentinpaja.fi/en/naarva-tuote/naarva-s23/ (дата обращения 01.02.2022).

[27] Правительство Московской области. URL: https://mosreg.ru/upload/iblock/2cf/04.jpg/ (дата обращения 01.02.2022).

[28] РГАУ-МСХА имени К.А.Тимирязева. URL: https://www.timacad.ru/uploads/images/20200206/1580985058_8N5B4144.jpg/ (дата обращения 01.02.2022).

Сведения об авторах

Карпачев Сергей Петрович — д-р техн. наук, профессор МГТУ им. Н.Э. Баумана (Мытищинский филиал), karpachevs@mail.ru

Быковский Максим Анатольевич — канд. техн. наук, профессор МГТУ им. Н.Э. Баумана (Мытищинский филиал), bykovskiy@mgul.ac.ru

MODELLING FOREST CLEARING TECHNOLOGY WITH MULTI-OPERATOR MACHINE

S.P. Karpachev, M.A. Bykovskiy

BMSTU (Mytishchi branch), 1, 1st Institutskaya st., 141005, Mytishchi, Moscow reg., Russia

karpachevs@mail.ru

A conceptual model of a forest multi-operator machine for clearing debris caused by tree mortality is presented. A technological process of sanitary forest clearing that minimizes manual labour with the help of a machine and a winch is considered, including the technology of litter removal with its processing into firewood in the forest. Two variants of multi-operating machine's work with a winch are given: sequential, when the machine processes the wood from the fell as it is received from the winch, and parallel, when the winch and machine work independently of each other. It is established that the productivity at debris removal at parallel operation of the machine and winch is higher by 7...14 % than at their consecutive operation. It is revealed that the productivity of a multi-operator machine when the machine and a winch work in parallel increases by 53...55 %. It is determined that the load of the machine, when working together with a winch, is less than 50 % of working time. It is recommended that the winch and the machine work together at close capacities, if the winch capacity is very different from the machine capacity, then they should work separately.

Keywords: dead and fallen trees fall away, forest multi-operation machine, winch, firewood, simulation modeling, mathematical model

Suggested citation: Karpachev S.P., Bykovskiy M.A. Modelirovanie tekhnologii ochistki lesa s pomoshch’yu mnogooperatsionnoy mashiny [Modelling forest clearing technology with multi-operator machine]. Lesnoy vestnik / Forestry Bulletin, 2023, vol. 27, no. 3, pp. 81–90. DOI: 10.18698/2542-1468-2023-3-81-90

References

[1] Shelgunov Yu.V. Mashiny i oborudovanie lesozagotovok, lesosplava i lesnogokhozyaystva [Machines and equipment of logging, timber rafting and forestry]. Moscow: Lesnaya promyshlennost’ [Timber industry], 1982, 520 p.

[2] Spinelli R., Hartsough B. A survey of Italian chipping operations. Biomass and Bioenergy, 2001, v. 21(6), pp. 433–444.

[3] Shirnin Yu.A. Tekhnologiya i oborudovanie lesopromyshlennykh proizvodstv. Ch. 1. Lesosechnye raboty [Technology and equipment of forest industry. Part 1. Logging work]. Moscow: MGUL, 2004, 445 p.

[4] Eliasson L., von Hofsten H., Johannesson T., Spinelli R., Thierfelder T. Effects of sieve size on chipper produc tivity, fuel consumption and chip size distribution for open drum chippers. Croatian J. of Forest Engineering, 2015, v. 36(1), pp. 11–17.

[5] Mihelic M., Spinelli R., Poje A. Production of Wood Chips from Logging Residue under Space-Constrained Conditions. Croatian J. of Forest Engineering, 2018, v. 39(2), pp. 223–232.

[6] Vinogorov G.K. Lesosechnye raboty [Logging work]. Moscow: Lesnaya promyshlennost’ [Forest industry], 1981, 272 p.

[7] Karpachev S.P., Bykovskiy M.A. Universal tractor processor for working in forests of different ages. IOP Conf. Series: Earth and Environmental Science, 2020, v. 574 (1), no. at. 012037. DOI:10.1088/1755-1315/574/1/012037

[8] Salminen E.O., Gurov S.V., Bol’shakov B.M. Razmeshchenie volokov na zabolochennykh uchastkakh [Placement of portages on wetlands]. Lesnaya promyshlennost’ [Forestry], 1988, no. 3, pp. 32–33.

[9] Baranovskiy V.A., Nekrasov R.M. Sistemy mashin dlya lesozagotovok [Systems of machines for logging]. Moscow: Lesnaya promyshlennost’ [Forest industry], 1977, 248 p.

[10] Magagnotti N., Spinelli R. Good practice guidelines for biomass production studies; WG2 Operations research and measurement methodologies. Sesto Fiorentino, Italy: COST Action FP-0902 and CNR Ivalsa, 2012, 52 p.

[11] Ryzhkov A.E., Prokazin N.E. Sistema dobrovol’noy lesnoy sertifikatsii PEFCFCR, otsenka lesoupravleniya, lesopol’zovaniya i tsepochki postavok lesoproduktsii na sootvetstvie mezhdunarodnym trebovaniyam [PEFCFCR voluntary forest certification system/assessment of forest management, forest use and supply chain of forest products for compliance with international requirements]. Moscow: PEFC-FCR, 1916, 254p.

[12] Spinelli R., Nati C., Magagnotti N. Recovering logging residue: experiences from the Italian Eastern Alps. Croatian J. of Forest Engineering, 2007, v. 28(1), pp. 1–9.

[13] Grigor’ev I.V., Zhukova A.I. Koordinatno-ob’emnaya metodika trassirovaniya pri osvoenii lesosek trelevkoy [Coordinatevolumetric tracing technique in the development of skidding sites]. Lesnoy Zhurnal (Russian Forestry Journal), 2004, no. 4, pp. 40–44.

[14] Gerasimov Y., Karjalainen T. Energy wood resources in Northwest Russia. Biomass and Bioenergy, 2011, no. 35, pp. 1655–1662.

[15] Esteban B., Baquero G., Puig R., Riba J.R., Rius A. Is it environmentally advantageous to use vegetable oil directly as biofuel instead of converting it to biodiesel? Biomass Bioenergy, 2011, no. 35, pp. 1317–1328. Available at: https://doi.org/10.1016/j. biombioe.2010.12.025 (accessed 01.02.2022).

[16] Syunev V.S. Sravnenie tekhnologiy lesosechnykh rabot v lesozagotovitel’nykh kompaniyakh Respubliki Kareliya [Comparison of logging technologies in logging companies of the Republic of Karelia]. Joensuu: Finnish Forest Research Institute METLA, 2008, 126 p.

[17] Makarenko A.V., Bykovskiy M.A., Laptev A.V. Effektivnost’ vypolneniya tekhnologicheskikh operatsiy pri provedenii vyborochnykh rubok lesa [The efficiency of technological operations during selective logging] Aktual’nye problem razvitiya lesnogo kompleksa. Materialy 13-y Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii, 01–02 dekabrya 2015 g. Vologodskiy gosudarstvennyy universitet [Actual problems of the development of the forest complex. Materials of the 13th International Scientific and Technical Conference, December 01–02, 2015. Vologda State University]. Vologda: VSTU, 2016, pp. 32–37.

[18] Grigor’ev I.V., Zhukova A.I., Grigor’eva O.I., Ivanov A.V. Sredoshchadyashchie tekhnologii razrabotki lesosek v usloviyakh severo-zapadnogo regiona Rossiyskoy Federatsii [Mediating technologies for the development of cutting areas in the northwestern region of the Russian Federation]. St. Petersburg: SPbGLTA, 2008, 174 p.

[19] Gerts E.F. Otsenka tekhnologii lesopol’zovaniya na lesosechnykh rabotakh [Evaluation of forest technology in logging work]. Ekaterinburg: USFU, 2003, 120 p.

[20] Makarenko A.V. Optimizatsiya razmeshcheniya seti trelevochnykh volokov na lesoseke [Optimizing the placement of a network of skidding trails in the cutting area. Logging production: problems and solutions]. Lesozagotovitel’noe proizvodstvo: problemy i resheniya. Materialy mezhdunarodnoy nauchno-tekhnicheskoy konferentsii, Minsk, BGTU, 26–28 aprelya 2017 g. [Materials of the international scientific and technical conference, Minsk, BSTU, April 26–28, 2017]. Minsk: BSTU, 2017, pp. 233–237.

[21] Galaktionov O.N. Tekhnologicheskiy protsess lesozagotovok i resursy lesosechnykh otkhodov [Technological process of logging and resources of logging waste]. Petrozavodsk: PetrSU, 2007, 95 p.

[22] Kuznetsov V.I. Predstavlyaem firmu «Lestekhkom» — novoe kachestvo lesozagotovitel’noy tekhniki [We represent Lestehkom, a new quality of logging equipment] Lesnaya promyshlennost’ [Forest Industry], 2006, no. 1, pp. 12–14.

[23] Piskunov M.A. Raspredelenie prokhodov forvardera i postroenie optimal’nykh skhem raspolozheniya trelevochnykh volokov na lesoseke [Distribution of forwarder passes and the construction of optimal layouts of skidding tracks in the cutting area]. Vestnik Volga State University of Technology. Ser.: Les. Ekologiya. Prirodopol’zovanie [Forest. Ecology. Nature use], 2017, no. 2 (34), pp. 37–48.

[24] Grigor’ev I.V. Snizhenie otritsatel’nogo vozdeystviya na pochvu kolesnykh traktorov obosnovaniem rezhimov ikh dvizheniya i tekhnologicheskogo oborudovaniya [Reducing the negative impact on the soil of wheeled tractors by justifying the modes of their movement and technological equipment]. St. Petersburg: SPbGLTA, 2006, 236 p.

[25] Derbin V.M., Derbin M.V. Tekhnologiya raboty kharvestera pri vyborochnykh rubkakh [The technology of the harvester’s work in selective felling]. Lesotekhnicheskiy zhurnal [Forest Engineering Journal], 2016, no. 2, pp. 69–75. DOI: 10.12737/19956

[26] Naarva S23. Available at: https://www.pentinpaja.fi/en/naarva-tuote/naarva-s23/ (accessed 01.02.2022).

[27] Government of the Moscow Region. Available at: https://mosreg.ru/upload/iblock/2cf/04.jpg/ (accessed 01.02.2022).

[28] Russian State Agrarian University — Moscow Timiryazev Agricultural Academy. Available at: https://www.timacad.ru/uploads/images/20200206/1580985058_8N5B4144.jpg/ (accessed 01.02.2022).

Authors’ information

Karpachev Sergey Petrovich — Dr. Sci. (Tech.), Professor of the BMSTU (Mytishchi branch), karpachevs@mail.ru

Bykovskiy Maksim Anatol’evich — Cand. Sci. (Tech.), Professor of the BMSTU (Mytishchi branch), bykovskiy@mgul.ac.ru

ДЕРЕВООБРАБОТКА И ХИМИЧЕСКАЯ ПЕРЕРАБОТКА ДРЕВЕСИНЫ

9 ЭВОЛЮЦИОННАЯ НЕЛИНЕЙНАЯ ХИМИЯ САМООРГАНИЗУЮЩИХСЯ МЕЗОФАЗНЫХ (ЖИДКОКРИСТАЛЛИЧЕСКИХ) СТРУКТУР ДРЕВЕСИНЫ: ОТ МОРФОГЕНЕЗА ДО РЕГУЛЯЦИИ УГЛЕОБРАЗОВАНИЯ (ОБЗОР) 91–127

УДК 544.25 + 532.783 + 553.9 + 547.458.8 + 661.728 + 662.66 + 665.7.032.53 + 676.022.62 + 676.16

DOI: 10.18698/2542-1468-2023-3-91-127

Шифр ВАК 4.3.4

О.В. Градов

ФГБУН Федеральный исследовательский центр химической физики им. Н.Н. Семенова РАН (ФИЦ ХФ РАН), Россия, 119334, г. Москва, ул. Косыгина, д. 4

o.v.gradov@gmail.com

Реконструирована последовательность превращений мезофазных (жидкокристаллических) компонентов древесины от нативного состояния до процессов образования торфа и угля. Рассмотрены отличные по клеточной локализации фитохимические источники мезофаз (от лигнина и таких полисахаридов, как целлюлоза, до липидов). Перечислены критерии, по которым можно обнаружить близость процессов формообразования мезофаз на основе растительного сырья в ходе углеобразования и самоорганизации в данных системах, в том числе с учетом тепловой накачки. Указано значение мембранных и мембраномиметических интерфейсов в регуляции исследуемого комплекса процессов. Рассмотрена применимость геохимических, биогеохимических редокс-критериев и соответствующих им факторов регуляции (аэробные, субаэральные, аэробные режимы) в анализе диагенеза мезофаз. Констатировано, что, в силу специфической регуляции (обратных связей), указанные факторы могут привести к пространственной гетерогенности при углеобразовании, «аутокаталитическим» эффектам и возникновению редокс-колебаний, сопровождающихся локализованной сменой свойств мезофаз — от поддерживающих возгорание до практически «антипиренных». Базируясь на наличии зависимостей свойств соответствующих продуктов от процессов их получения и формообразования, а также (гео)химического их окружения (что свойственно супрамолекулярной и коллоидной химии), можно аннотировать супрамолекулярный и коллоидно-химический подходы к интерпретации ряда феноменов и механизмов формирования ископаемых биогенных мезофаз, что требует рассмотрения в отдельном обзоре.

Ключевые слова: мезофазные (жидкокристаллические) компоненты древесины; коксообразование; углеобразование; фитохимические мезофазные прекурсоры; самоорганизация; мембраномиметики; биогенные мезофазные структуры; геохимические аспекты преобразования мезофаз

Ссылка для цитирования: Градов О.В. Эволюционная нелинейная химия самоорганизующихся мезофазных (жидкокристаллических) структур древесины: от морфогенеза до регуляции углеобразования (oбзор) // Лесной вестник / Forestry Bulletin, 2023. Т. 27. № 3. С. 91–127. DOI: 10.18698/2542-1468-2023-3-91-127

Список литературы

[1] White J.L. Role of carbonaceous mesophase in determining morphologies of coke and graphite // American Ceramic Society Bulletin, 1970, v. 49, iss. 4, p. 488.

[2] White J.L. Mesophase mechanisms in the formation of the microstructure of petroleum coke // ACS Symposium Series, 1976, v. 21, pp. 282–314. DOI: 10.1021/bk-1976-0021.ch021

[3] Лебедев А.Ю., Собкалов А.В., Ивахнюк Г.К. Склонность горючих материалов к самовозгоранию. Эколого-криминалистический аспект // Пожаровзрывобезопасность, 2011. Т. 20. № 10. С. 11–18.

[4] Krüger G.J. Diffusion in thermotropic liquid crystals // Physics Reports, 1982, v. 82, iss. 4, pp. 229–269. DOI: 10.1016/0370-1573(82)90025-4

[5] Ide Y., Ophir Z. Orientation development in thermotropic liquid crystal polymers // Polymer Engineering & Science, 1983, v. 23, iss. 5, pp. 261–265. DOI: 10.1002/pen.760230505

[6] Langer S.A., Glotzer S.C. Morphogenesis in nematic liquid crystal/polymer materials // Physica A: Statistical Mechanics and its Applications, 1997, v. 239, iss. 1-3, pp. 358–362. DOI: 10.1016/S0378-4371(97)00030-7

[7] Gim M.J., Beller D.A., Yoon D.K. Morphogenesis of liquid crystal topological defects during the nematic-smectic A phase transition // Nature Communications, 2017, v. 8, iss. 1, pp. 1–9. DOI: 10.1038/ncomms15453

[8] Blackman L.D., Doncom K.E., Gibson M.I., O’Reilly R.K. Comparison of photo-and thermally initiated polymerization-induced self-assembly: a lack of end group fidelity drives the formation of higher order morphologies // Polymer Chemistry, 2017, v. 8, iss. 18, pp. 2860–2871. DOI: 10.1039/C7PY00407A

[9] Rosenhauer R., Fischer T., Stumpe J. Light-induced anisotropy of stilbene containing LC polymers and its thermal development by self-organization // Proc. SPIE, 2004, v. 5213, pp. 169–182. DOI: 10.1117/12.506809

[10] Lee H.K., Kanazawa A., Shiono T., Ikeda T., Fujisawa T., Aizawa M., Lee B. Reversible optical control of transmittance in polymer/liquid crystal composite films by photoinduced phase transition // J. of Applied Physics, 1999, v. 86, iss. 11, pp. 5927–5934. DOI: 10.1063/1.371717

[11] Gvozdovskyy I., Yaroshchuk O., Serbina M., Yamaguchi R. Photoinduced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring // Optics express, 2012, v. 20, iss. 4, pp. 3499–3508. DOI: 10.1364/OE.20.003499

[12] Grint A., Marsh H. Carbonization of coal blends: mesophase formation and coke properties // Fuel, 1981, v. 60, iss. 12, pp. 1115–1120. DOI: 10.1016/0016-2361(81)90063-6

[13] Kapustin S.M., Stolonogov I.I., Syunyaev Z.I., Zaitseva N.P. Coalescence of particles of liquid crystal phase in coking residual petroleum stocks // Chemistry and Technology of Fuels and Oils, 1983, v. 19, iss. 4. DOI: 10.1007/BF00731007

[14] Cheng S.X., Chung T.S. Phase separation and coalescence, annihilation of liquid crystal textures during polymerization of main-chain liquid crystalline polyesters // The J. of Physical Chemistry B, 1999, v. 103, iss. 23, pp. 4923–4932. DOI: 10.1021/jp984332q

[15] El Horr N., Bourgerette C., Oberlin A. Mesophase powders (carbonization and graphitization) // Carbon, 1994, v. 32, iss. 6, pp. 1035–1044. DOI: 10.1016/0008-6223(94)90212-7

[16] Smith G.W., White J.L., Buechler M. Mesophase/isotropic phase interfacial energy: Determination from coalescence kinetics of mesophase pitch // Carbon, 1985, v. 23, iss. 1, pp. 117–121. DOI: 10.1007/BF00731007

[17] Marsh H. A Review of the Growth and Coalescence of Mesophase (Nematic Liquid Crystals) to Form Anisotropic Carbon, and Its Relevance to Coking and Graphitization // Proceedings of the 4th Int. Conf. on Carbon and Graphite, London, 1974, pp. 2–38.

[18] Moriyama R., Hayashi J.I., Suzuki K., Hiroshima T., Chiba T. Analysis and modeling of mesophase sphere generation, growth and coalescence upon heating of a coal tar pitch // Carbon, 2002, v. 40, iss. 1, pp. 53–64. DOI: 10.1016/S0008-6223(01)00070-7

[19] Chen L., Fei Y., Fan X., Jiang Z. Coalescence of mesophase spheres and microstructure of graphitic carbon revealed by scanning electron microscopy // J. of Materials Science, 2017, v. 52, iss. 21, pp. 12663–12676. DOI: 10.1007/s10853-017-1364-3

[20] Zheng W.J. The effect of mechanical rubbing on the surface free energy of poly (vinyl) alcohol thin films and the contact angle of a liquid crystal on the rubbed polymer surfaces // Molecular Crystals and Liquid Crystals, 2007, v. 479, iss. 1, pp. 1041–1049. DOI: 10.1080/15421400701758816

[21] Marshall K.L., Didovets O., Saulnier D. Contact-angle measurements as a means of probing the surface alignment characteristics of liquid crystal materials on photoalignment layers // Proc. SPIE, 2014, v. 9182, pp. 91820J-2–91820J-1. DOI: 10.1117/12.2062074

[22] Forrest M., Harry M. Growth and coalescence of mesophase in pitches with carbon black additives and in coal // Fuel, 1983, v. 62, iss. 5, pp. 612–615. DOI: 10.1016/0016-2361(83)90237-5

[23] Torii T. Effect of magnetic field on the coalescence and growth of carbonaceous mesophase spherules // Current Advances in Materials and Processes, 2000, v. 13, iss. 4, pp. 919–919.

[24] Choi Y.J., Kim J.H., Lee S.E., Lee Y.S., Lim J.S. Investigation of the coalescence phase between mesophase spheres during mesophase formation // Research Papers of the Korean Institute of Industrial Chemistry, 2019, v. 2019, iss. 1, pp. 437–437.

[25] Hales T.C. The sphere packing problem // J. of Computational and Applied Mathematics, 1992, v. 44, iss. 1, pp. 41–76. DOI: 10.1016/0377-0427(92)90052-Y

[26] Valembois A., Fossorier M.P. C. Sphere-packing bounds revisited for moderate block lengths // IEEE Transactions on Information Theory, 2004, v. 50, iss. 12, pp. 2998–3014. DOI: 10.1109/TIT.2004.838090

[27] Weishauptova Z., Medek J., Vaverkova Z. Study of the porosity of mesophase and its carbonization products // Carbon, 1994, v. 32, iss. 2, pp. 311–321. DOI: 10.1016/0008-6223(94)90194-5

[28] Carroll M.M., Kim K.T., Nesterenko V.F. The effect of temperature on viscoplastic pore collapse // J. of Applied Physics, 1986, v. 59, iss. 6, pp. 1962–1967. DOI: 10.1063/1.336426

[29] Duan Z.P., Wen L.J., Liu Y., Ou Z. C., Huang F.L., Zhang Z.Y. A pore collapse model for hot-spot ignition in shocked multi-component explosives // International J. of Nonlinear Sciences and Numerical Simulation, 2010, v. 11, pp. 19–24. DOI: 10.1515/IJNSNS.2010.11.S1.19

[30] Kumar S., Srivastava M. Influence of presence/addition of asphaltenes on semi-coke textures and mesophase development in petroleum feed stocks // Fuel, 2016, v. 173, pp. 69–78. DOI: 10.1016/j.fuel.2016.01.026

[31] Mehta S., Mitchell G.D., Karpinski J.M. Development of the mesophase and coke-carbon forms during coal carbonization // Biennial Conf. on Carbon. Philadelphia, USA, 1981, pp. 198–199.

[32] Friel J.J. Role of the mesophase during the coal to coke transformation // Proceedings of the 39th Ironmaking Conference. Washington, USA, 1980, v. 39, iss. 23, pp. 274–278.

[33] Moreland A., Patrick J., Walker A. The role of mesophase formation during carbonization in determining coke strength // Coal Science and Technology, 1987, v. 11, pp. 729–732.

[34] Buechler M., Ng C.B., White J.L. Needlelike coke prepared by deformation of carbonaceous mesophase // Biennial Conf. on Carbon. University Park PA, USA, 1980, pp. 433–434.

[35] Ebert L.B., Kastrup R.V., Scanlon J.C. The disruption of aromatic stacking order in mesophase petroleum coke via reductive alkylation // Materials Research Bulletin, 1988, v. 23, iss. 12, pp. 1757–1763. DOI: 10.1016/0025-5408(88)90186-9

[36] Liberman M.A. Introduction to physics and chemistry of combustion: explosion, flame, detonation // Berlin-Heidelberg, Springer, 2008, p. 349. DOI: 10.1007/978-3-540-78759-4

[37] Azatyan V.V. Scientific foundations and effective chemical methods of combustion, explosion, and gas detonation control // Russian J. of Physical Chemistry A, 2011, v. 85, iss. 8, pp. 1293–1306. DOI: 10.1134/S0036024411080036

[38] Goh M., Matsushit S., Akagi K. From helical polyacetylene to helical graphite: synthesis in the chiral nematic liquid crystal field and morphology-retaining carbonisation // Chemical Society Reviews, 2010, v. 39, iss. 7, pp. 2466–2476. DOI: 10.1039/b907990b

[39] Sanada Y. Furuta T., Kimura H., Honda H. Formation of anisotropic mesophase from various carbonaceous materials in early stages of carbonization // Fuel, 1973, v. 52, iss. 2, pp. 143–148. DOI: 10.1016/0016-2361(73)90039-2

[40] Fanjul F., Granda M., Santamarı́a R., Menéndez R. On the chemistry of the oxidative stabilization and carbonization of carbonaceous mesophase // Fuel, 2002, v. 81, iss. 16, pp. 2061–2070. DOI: 10.1016/S0016-2361(02)00189-8

[41] Marsh H. Carbonization and liquid-crystal (mesophase) development: Part 1. The significance of the mesophase during carbonization of coking coals // Fuel, 1973, v. 52, iss. 3, pp. 205–212. DOI: 10.1016/0016-2361(73)90080-X

[42] Marsh H., Foster J. M., Hermon G., Iley M. Carbonization and liquid-crystal (mesophase) development. Part 2. Co-carbonization of aromatic and organic dye compounds, and influence of inerts // Fuel, 1973, v. 52, iss. 4, pp. 234–242. DOI: 10.1016/0016-2361(73)90051-3

[43] Marsh H., Foster J.M., Hermon G., Iley M., Melvin J.N. Carbonization and liquid-crystal (mesophase) development. Part 3. Co-carbonization of aromatic and heterocyclic compounds containing oxygen, nitrogen and sulphur // Fuel, 1973, v. 52, iss. 4, pp. 243–252. DOI: 10.1016/0016-2361(73)90052-5

[44] Dingemans T., Knijnenberg A., Iqbal M., Weiser E., Stclair T. All-aromatic liquid crystal thermosets: New high-performance materials for structural applications // Liquid Crystals Today, 2006, v. 15, iss. 4, pp. 19–24. DOI: 10.1080/14645180701470371

[45] Iqbal M., Dingemans T.J. Synthesis, characterization and properties of branched all-aromatic liquid crystal thermosets // High Performance Polymers, 2010, v. 22, iss. 8, pp. 891–904. DOI: 10.1177/0954008310376677

[46] Iqbal M., Dingemans T.J. High-performance composites based on all-aromatic liquid crystal thermosets // Composites Science and Technology, 2011, v. 71, iss. 6, pp. 863–867. DOI: 10.1016/j.compscitech.2011.01.030

[47] Marsh H., Dachille F., Iley M., Walker P.L., Whang P.W. Carbonization and liquid-crystal (mesophase) development. Part 4. Carbonization of coal-tar pitches and coals of increasing rank // Fuel, 1973, v. 52, iss. 4, pp. 253–261. DOI: 10.1016/0016-2361(73)90053-7

[48] Goodarzi F., Hermon G., Iley M., Marsh H. Carbonization and liquid-crystal (mesophase) development. 6. Effect of pre-oxidation of vitrinites upon coking properties // Fuel, 1975, v. 54, iss. 2, pp. 105–112. DOI: 10.1016/0016-2361(75)90065-4

[49] Reis D., Vian B., Chanzy H., Roland J. C. Liquid crystal-type assembly of native cellulose-glucuronoxylans extracted from plant cell wall // Biology of the Cell, 1991, v. 73, iss. 2–3, pp. 173–178. DOI: 10.1016/0248-4900(91)90100-2

[50] Roland J. C., Reis D., Vian B. Liquid crystal order and turbulence in the planar twist of the growing plant cell walls // Tissue and Cell, 1992, v. 24, iss. 3, pp. 335–345. DOI: 10.1016/0040-8166(92)90050-H

[51] Marsh H., Hermon G., Cornford C. Carbonization and liquid-crystal (mesophase) development. 5. Importance of eutectic zones formed from nematic liquid crystals // Fuel, 1974, v. 53, iss. 3, pp. 168–171. DOI: 10.1016/0016-2361(74)90004-0

[52] Mochida I., Marsh H. Carbonization and liquid-crystal (mesophase) development. 7. Optical textures of cokes from acenaphthylene and decacyclene // Fuel, 1979, v. 58, iss. 9, pp. 626–632. DOI: 10.1016/0016-2361(79)90215-1

[53] Mochida I., Marsh H., Grint A. Carbonization and liquid-crystal (mesophase) development. 8. The co-carbonization of coals with acenaphthylene and decacyclene // Fuel, 1979, v. 58, iss. 9, pp. 633–641. DOI: 10.1016/0016-2361(79)90216-3

[54] Grint A., Swietlik U., Marsh H. Carbonization and liquid-crystal (mesophase) development. 9. The co-carbonization of vitrains with Ashland A200 petroleum pitch // Fuel, 1979, v. 58, iss. 9, pp. 642–650. DOI: 10.1016/0016-2361(79)90217-5

[55] Mochida I., Marsh H. Carbonization and liquid-crystal (mesophase) development. 10. The co-carbonization of coals with solvent-refined coals and coal extracts // Fuel, 1979, v. 58, iss. 11, pp. 790–796. DOI: 10.1016/0016-2361(79)90184-4

[56] Mochida I., Marsh H. Carbonization and liquid-crystal (mesophase) development. 11. The co-carbonization of low-rank coals with modified petroleum pitches // Fuel, 1979, v. 58, iss. 11, pp. 797–802. DOI: 10.1016/0016-2361(79)90185-6

[57] Mochida I., Marsh H., Grint A. Carbonization and liquid-crystal (mesophase) development. 12. Mechanisms of the co-carbonization of coals with organic additives // Fuel, 1979, v. 58, iss. 11, pp. 803–808. DOI: 10.1016/0016-2361(79)90186-8

[58] Mochida I., Marsh H. Carbonization and liquid-crystal (mesophase) development. 13. Kinetic considerations of the co-carbonizations of coals with organic additives // Fuel, 1979, v. 58, iss. 11, pp. 809–814. DOI: 10.1016/0016-2361(79)90187-X

[59] Guymon C.A., Bowman C.N. Kinetic analysis of polymerization rate acceleration during the formation of polymer/smectic liquid crystal composites // Macromolecules, 1997, v. 30, iss. 18, pp. 5271–5278. DOI: 10.1021/ma9703970

[60] Jeong H.K., Kikuchi H., Kajiyama T. Kinetic control of the phase-separated structure and electro-optical switching properties of (polymer/liquid crystal) composite films prepared by a solvent cast method // New Polymeric Materials, 1998, v. 5, iss. 2, pp. 103–117.

[61] Wysocki J.J., Adams J.E., Olechna D.J. Kinetic Study of the Electric Field-Induced Cholestericnematic Transition in Liquid Crystal Films: 1. Relaxation to the Cholesteric State // Liquid Crystals and Ordered Fluids. Springer, Boston, MA, 1970, pp. 419–445. DOI: 10.1007/978-1-4684-8214-0

[62] Wysocki J.J. Continued Kinetic Study of the Cholesteric-Nematic Transition in a Liquid Crystal Film // Molecular Crystals and Liquid Crystals, 1971, v. 14, iss. 1–2, t. 71–84. DOI: 10.1080/15421407108083558

[63] Calderer M.C., Forest M.G., Wang Q. Kinetic theories and mesoscopic models for solutions of nonhomogeneous liquid crystal polymers // J. of Non-Newtonian Fluid Mechanics, 2004, v. 120, iss. 1–3, pp. 69–78. DOI: 10.1016/j.jnnfm.2004.01.015

[64] Yu H., Ji G., Zhang P. A nonhomogeneous kinetic model of liquid crystal polymers and its thermodynamic closure approximation // Communications in Computational Physics, 2010, v. 7, iss. 2, pp. 383. DOI: 10.4208/cicp.2009.09.202

[65] Yu H., Zhang P. A kinetic hydrodynamic simulation of microstructure of liquid crystal polymers in plane shear flow // J. of Non-Newtonian Fluid Mechanics, 2007, v. 141, iss. 2–3, pp. 116–127. DOI: 10.1016/j.jnnfm.2006.09.005

[66] Honorato-Rios C., Kuhnhold A., Bruckner J.R., Dannert R., Schilling T., Lagerwall J.P. Equilibrium liquid crystal phase diagrams and detection of kinetic arrest in cellulose nanocrystal suspensions // Frontiers in Materials, 2016, v. 3, p. 21. DOI: 10.3389/fmats.2016.00021

[67] Marsh H., Mochida I., Scott E., Sherlock J. Carbonization and liquid-crystal (mesophase) development. 17. Co-carbonization of a solvent-refined coal with petroleum pitches and hydrogenated coal-extract solution // Fuel, 1980, v. 59, iss. 7, pp. 517–519. DOI: 10.1016/0016-2361(80)90181-7

[68] Yokono T., Marsh H., Yokono M. Carbonization and liquidcrystal (mesophase) development. 19. Co-carbonization of oxidized coals with model organic compounds // Fuel, 1981, v. 60, iss. 6, pp. 507–512. DOI: 10.1016/0016-2361(81)90113-7

[69] Grint A., Marsh H. Carbonization and liquid-crystal (mesophase) development. 20. Co-carbonization of a high-volatile caking coal with several petroleum pitches // Fuel, 1981, v. 60, iss. 6, pp. 513–518. DOI: 10.1016/0016-2361(81)90114-9

[70] Ragan S., Marsh H. Carbonization and liquid-crystal (mesophase) development. 22. Micro-strength and optical textures of cokes from coal-pitch co-carbonizations // Fuel, 1981, v. 60, iss. 6, pp. 522–528. DOI: 10.1016/0016-2361(81)90116-2

[71] Marsh H., Neavel R.C. Carbonization and liquid-crystal (mesophase) development. 15. A common stage in mechanisms of coal liquefaction and of coal blends for coke making // Fuel, 1980, v. 59, iss. 7, pp. 511–513. DOI: 10.1016/0016-2361(80)90179-9

[72] Marsh H., Mochida I., Macefield I., Scott E. Carbonization and liquid-crystal (mesophase) development. 16. Carbonizations of soluble and insoluble fractions of coal-extract solution // Fuel, 1980, v. 59, iss. 7, pp. 514–516. DOI: 10.1016/0016-2361(80)90180-5

[73] Marsh H., Gerus-Piasecka I., Grint A. Carbonization and liquid crystal (mesophase) development. 14. Co-carbonization of coals with A240 Ashland petroleum pitch: effects of conditions of carbonization upon optical textures of resultant cokes // Fuel, 1980, v. 59, iss. 5, pp. 343–348. DOI: 10.1016/0016-2361(80)90221-5

[74] Marsh H., Kimber G. M., Rantell T., Scott E. Carbonization and liquid-crystal (mesophase) development. 18. carbonization of coal-extract solutions (non-hydrogenated): influence of digestion conditions upon optical texture of cokes // Fuel, 1980, v. 59, iss. 7, pp. 520–522. DOI: 10.1016/0016-2361(80)90182-9

[75] Grint A., Marsh H. Carbonization and liquid-crystal (mesophase) development. 21. Replacement of low-volatile caking coal by petroleum pitch in coal blends for metallurgical coke // Fuel, 1981, v. 60, iss. 6, pp. 519–521. DOI: 10.1016/0016-2361(81)90115-0

[76] Park Y.D., Korai Y., Mochida I. Preparation of anisotropic mesophase pitch by carbonization under vacuum // J. of Materials Science, 1986, v. 21, iss. 2, pp. 424–428. DOI: 10.1007/BF01145504

[77] Preiss H., Kretzschmar U., Rossberg M., Ulbricht K. The carbonization of halogenated mesophase pitches // Fuel, 1991, v. 70, iss. 9, pp. 1045–1051. DOI: 10.1016/0016-2361(91)90258-C

[78] Yanagisawa K., Suzuki T. Carbonization of oxidized mesophase pitches originating from petroleum and coal tar // Fuel, 1993, v. 72, iss. 1, pp. 25–30. DOI: 10.1016/0016-2361(93)90371-8

[79] Miyake M., Ida T., Yoshida H., Wakisaka S., Nomura M., Hamaguchi M., Nishizawa T. Effects of reductively introduced alkyl groups and hydrogen to mesophase pitch on carbonization properties // Carbon, 1993, v. 31, iss. 5, pp. 705–714. DOI: 10.1016/0008-6223(93)90007-W

[80] Drbohlav J., Stevenson W.T.K. The oxidative stabilization and carbonization of a synthetic mesophase pitch, part I: The oxidative stabilization process // Carbon, 1995, v. 33, iss. 5, pp. 693–711. DOI: 10.1016/0008-6223(95)00011-2

[81] Drbohlav J., Stevenson W.T.K. The oxidative stabilization and carbonization of a synthetic mesophase pitch, part II: The carbonization process // Carbon, 1995, v. 33, iss. 5, pp. 713–731. DOI: 10.1016/0008-6223(95)00012-3

[82] Liedtke V., Hüttinger K.J. Mesophase pitches as matrix precursor of carbon fiber reinforced carbon: III. Mechanical properties of composites after carbonization and graphitization treatment // Carbon, 1996, v. 34, iss. 9, pp. 1081–1086. DOI: 10.1016/0008-6223(96)00057-7

[83] Kanno K., Fernandez J.J., Fortin F., Korai Y., Mochida I. Modifications to carbonization of mesophase pitch by addition of carbon blacks // Carbon, 1997, v. 35, iss. 10–11, pp. 1627–1637. DOI: 10.1016/S0008-6223(97)00123-1

[84] Honda H., Kimura H., Sanada Y., Sugawara S., Furuta T. Optical mesophase texture and X-ray diffraction pattern of the early-stage carbonization of pitches // Carbon, 1970, v. 8, iss. 2, pp. 181–189. DOI: 10.1016/0008-6223(70)90112-0

[85] Oshida K., Bonnamy S. Primary carbonization of an anisotropic ‘mesophase’ pitch compared to conventional isotropic pitch // Carbon, 2002, v. 40, iss. 14, pp. 2699–2711. DOI: 10.1016/S0008-6223(02)00184-7

[86] Mianowski A., Blazewicz S., Robak Z. Analysis of the carbonization and formation of coal tar pitch mesophase under dynamic conditions // Carbon, 2003, v. 41, iss. 12, pp. 2413–2424. DOI: 10.1016/S0008-6223(03)00301-4

[87] Zhang X., Khor S., Gao D., Sum E. Carbonization chemistry of heating carbon composites containing novolac/furfuryl alcohol resins and carbon black or mesophase pitch as additives // Materials Chemistry and Physics, 2012, v. 131, iss. 3, pp. 735–742. DOI: 10.1016/j.matchemphys.2011.10.044

[88] Zhang B., Song H., Chen X., Yang W., Li Z., Ma Z. Transformation of Lewis acid during the carbonization and graphitization of mesophase pitches // J. of Analytical and Applied Pyrolysis, 2013, v. 104, pp. 433–440. DOI: 10.1016/j.jaap.2013.06.001

[89] Cheng Y., Fang C., Su J., Yu R., Li T. Carbonization behavior and mesophase conversion kinetics of coal tar pitch using a low temperature molten salt method // J. of Analytical and Applied Pyrolysis, 2014, v. 109, pp. 90–97. DOI: 10.1016/j.jaap.2014.07.009

[90] Cheng Y., Yang L., Luo T., Fang C., Su J., Hui J. Preparation and characterization of mesophase pitch via co-carbonization of waste polyethylene/petroleum pitch // J. of Materials Science & Technology, 2015, v. 31, iss. 8, pp. 857–863. DOI: 10.1016/j.jmst.2015.07.010

[91] Pan G., Liang W., Liang P., Chen Q. Effect of vacuum-carbonization treatment of soft carbon anodes derived from coal-based mesophase pitch for lithium-ion batteries // Clean Energy, 2019, v. 3, iss. 3, pp. 211–216. DOI: 10.1093/ce/zkz011

[92] Cheng X., Song S. Eutectic effect during mesophase formation in co-carbonization of ethylene tar pitch and polystyrene // International J. of Mining Science and Technology, 2012, v. 22, iss. 2, pp. 183–186. DOI: 10.1016/j.ijmst.2011.08.008

[93] Zubkova V., Prezhdo V. The formation of mesophase composites under influence of the coal-tar pitch during coal carbonization // Composite Interfaces, 2005, v. 12, iss. 6, pp. 523–544. DOI: 10.1163/1568554054915174

[94] Baxter R.W. A study of the vegetative anatomy of the genus Sphenophyllum from American coal balls // Annals of the Missouri Botanical Garden, 1948, v. 35, iss. 3, pp. 209–231.

[95] Brea M., Zucol A.F., Iglesias A. Fossil plant studies from late Early Miocene of the Santa Cruz Formation: paleoecology and paleoclimatology at the passive margin of Patagonia, Argentina // Early Miocene Paleobiology in Patagonia: High-Latitude Paleocommunities of the Santa Cruz Formation. Cambridge, UK: Cambridge University Press, 2012, pp. 104–128. DOI: 10.1017/CBO9780511667381.008

[96] Liu Y.A., Kung C.C. Plant fossils of late Eocene from Wucheng, Honan and their significance in botany and paleoclimatology // Chih Wu Hsueh Pao, 1978, v. 1, pp. 59–65.

[97] Poynter J.G., Farrimond P., Robinson N., Eglinton G. Aeolian-derived higher plant lipids in the marine sedimentary record: links with paleoclimate, paleoclimatology and paleometeorology: modern and past patterns of global atmospheric transport // NATO ASI Series. Series C: Mathematical and Physical Sciences, 1989, v. 282, pp. 435–462. DOI: 10.1007/978-94-009-0995-3

[98] Luzzati V., Husson F. The structure of the liquid-crystalline phases of lipid-water systems // The J. of Cell Biology, 1962, v. 12, iss. 2, pp. 207–219. DOI: 10.1083/jcb.12.2.207

[99] Kirk G.L., Gruner S.M. Lyotropic effects of alkanes and headgroup composition on the Lα-HII lipid liquid crystal phase transition: hydrocarbon packing versus intrinsic curvature // J. de Physique, 1985, v. 46, iss. 5, pp. 761–769. DOI: 10.1051/jphys:01985004605076100

[100] Willison J.H.M., Abeysekera R.M. A liquid crystal containing cellulose in living plant tissue // J. of Polymer Science Part C: Polymer Letters, 1988, v. 26, iss. 2, pp. 71–75. DOI: 10.1002/pol.1988.140260202

[101] Reis D., Vian B., Chanzy H., Roland J.C. Liquid crystal-type assembly of native cellulose-glucuronoxylans extracted from plant cell wall // Biology of the Cell, 1991, v. 73, iss. 2–3. pp. 173–178. DOI: 10.1016/0248-4900(91)90100-2

[102] Roland J.C., Reis D., Vian B. Liquid crystal order and turbulence in the planar twist of the growing plant cell walls // Tissue and Cell, 1992, v. 24, iss. 3, pp. 335–345. DOI: 10.1016/0040-8166(92)90050-h

[103] Godinho M.H., Canejo J.P., Feio G., Terentjev E.M. Self-winding of helices in plant tendrils and cellulose liquid crystal fibers // Soft Matter, 2010, v. 6, iss. 23, pp. 5965–5970. DOI: 10.1039/C0SM00427H

[104] van der Heijden E., Bouman F., Boon J.J. Anatomy of recent and peatified Calluna vulgaris stems: implications for coal maceral formation // International J. of Coal Geology, 1994, v. 25, iss. 1, pp. 1–25. DOI: 10.1016/0166-5162(94)90002-7

[105] Ielpi A. Anatomy of major coal successions: Facies analysis and sequence architecture of a brown coal-bearing valley fill to lacustrine tract (Upper Valdarno Basin, Northern Apennines, Italy) // Sedimentary Geology, 2012, v. 265, pp. 163–181. DOI: 10.1016/j.sedgeo.2012.04.006

[106] Mukherjee S.M., Sikorski J., Woods H.J. Micellar structure of native cellulose // Nature, 1951, v. 167, iss. 4255, pp. 821–822. DOI: 10.1038/167821b0

[107] Mukherjee S.M., Woods H.J. X-ray and electron microscope studies of the degradation of cellulose by sulphuric acid // Biochimica et Biophysica Acta, 1953, v. 10, pp. 499–511. DOI: 10.1016/0006-3002(53)90295-9

[108] Marchessault R.H., Morehead F.F., Walter N.M. Liquid crystal systems from fibrillar polysaccharides // Nature, 1959, v. 184, iss. 4686, pp. 632–633. DOI: 10.1038/184632a0

[109] Зарубина А.Н., Иванкин А.Н., Кулезнев А.С., Кочетков В.А. Целлюлоза и наноцеллюлоза. Обзор // Лесной вестник/Forestry bulletin, 2019. Т. 23. № 5. С. 116–125.

[110] Spontak R.J., El-Nokaly M.A., Bartolo R.G., Burns J.L. Characterization of Lyotropic Polysaccharide Liquid Crystal Blends // Studies in Polymer Science. Elsevier, 1992, v. 11, pp. 273–298. DOI: 10.1016/B978-0-444-89397-0.50019-1

[111] Loshadkin D.V., Khanchich O.A. Study of phase transitions in liquid crystal systems of polysaccharides and their derivatives // Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 2001, v. 367, iss. 1, pp. 597–604. DOI: 10.1080/10587250108028680

[112] Shipovskaya A.B., Timofeev G.N. Liquid-crystal state in the system polysaccharide-mesophasogenic solvent // J. of Engineering Physics and Thermophysics, 2006, v. 79, iss. 1, pp. 143–151. DOI: 10.1007/s10891-006-0078-1

[113] Gibeaut D.M., Carpita N.G. Biosynthesis of plant cell wall polysaccharides // The FASEB J., 1994, v. 8, iss. 12, pp. 904–915. DOI: 10.1096/fasebj.8.12.8088456

[114] Gorshkova T.A., Wyatt S.E., Salnikov V.V., Gibeaut D.M., Ibragimov M.R., Lozovaya V.V., Carpita N.C. Cell-wall polysaccharides of developing flax plants // Plant Physiology, 1996, v. 110, iss. 3, pp. 721–729. DOI: 10.1104/pp.110.3.721

[115] Lerouxel O., Cavalier D.M., Liepman A.H., Keegstra K. Biosynthesis of plant cell wall polysaccharidesa complex process // Current opinion in plant biology, 2006, v. 9, iss. 6, pp. 621–630. DOI: 10.1016/j.pbi.2006.09.009

[116] Gorshkova T.A., Kozlova L.V., Mikshina P.V. Spatial structure of plant cell wall polysaccharides and its functional significance // Biochemistry, 2013, v. 78, iss. 7, pp. 836–853. DOI: 10.1134/S0006297913070146

[117] Keilich G., Bailey P., Liese W. Enzymatic degradation of cellulose, cellulose derivatives and hemicelluloses in relation to the fungal decay of wood // Wood Science and Technology, 1970, v. 4, iss. 4, pp. 273–283. DOI: 10.1007/BF00386403

[118] Haigler C.H., White A.R., Brown R.M., Cooper K.M. Alteration of in vivo cellulose ribbon assembly by carboxymethylcellulose and other cellulose derivatives // J. of Cell Biology, 1982, v. 94, iss. 1, pp. 64–69. DOI: 10.1083/jcb.94.1.64

[119] Coffey D.G., Bell D.A., Henderson A. Cellulose and cellulose derivatives // Food Polysaccharides and their applications. Ed. Stephen A.M. New York, Marcel Dekker, 1995, pp. 123–153. DOI: 10.1201/9781420015164.ch5

[120] Bayer E.A., Shoham Y., Lamed R. The cellulosomean exocellular organelle for degrading plant cell wall polysaccharides // Glycomicrobiology. Kluwer Academic/Plenum Publishers, New York, 2000, pp. 387–439. DOI: 10.1007/0-306-46821-2_14

[121] Fried F., Gilli J., Seurin M., Sixou P. Experimental results in lyotropic liquid-crystal solutions of cellulose derivatives // Abstracts of Papers of the American Chemical Society, v. 186, p. 49.

[122] Yong H., Li-Sheng C.M., Li L.S. Study on lyotropic liquid-crystal of ethyl cyanoethyl cellulose // Acta Chimica Sinica, 1988, v. 46, iss. 4, pp. 367–371.

[123] Novikov D.V., Krasovskii A.N., Mnatsakanov S.S. Domain structure of cellulose triacetate // Physics of the Solid State, 2012, v. 54, iss. 2, pp. 409–413.

[124] Gilbert R.D., Patton P.A. Liquid crystal formation in cellulose and cellulose derivatives // Progress in Polymer Science, 1983, v. 9, iss. 2–3, pp. 115–131. DOI: 10.1016/0079-6700(83)90001-1

[125] Khanchich O.A., Loshadkin D.V. Liquid crystal systems of cellulose and its derivatives // Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 2001, v. 365, iss. 1, pp. 313–321. DOI: 10.1080/10587250108025309

[126] Geng Y., Seč D., Almeida P.L., Lavrentovich O.D., Žumer S., Godinho M.H. Liquid crystal necklaces: cholesteric drops threaded by thin cellulose fibres // Soft Matter, 2013, v. 9, iss. 33, pp. 7928–7933. DOI: 10.1039/C3SM50900A

[127] Lan X., Jie X., Peng Y., Bin G. A Study of Cellulose Cholesteric Liquid Crystal Texture from Paper Pulp // J. of East China Jiaotong University, 2011, v. 5, pp. 71–76 https://caod.oriprobe.com/order.htm?id=28907858

[128] Li C., Evans J., Wang N., Guo T., He S. Preparation and liquid crystal phase properties of discotic cellulose nanoparticles // Cellulose, 2019, v. 26, iss. 18, pp. 9543–9552. DOI: 10.1007/s10570-019-02773-7

[129] Si-tong L.I.U., Da-wei Z., Guang-zhe P. Ultrasonic effect on lyotropic chiral nematic liquid crystal of cellulose nanocrystal // Chinese J. of Liquid Crystal & Displays, 2015, v. 30, iss. 2. DOI: 10.3788/YJYXS20153002.0229

[130] Santos M.V., Tercjak A., Gutierrez J., Barud H.S., Napoli M., Nalin M., Ribeiro S.J. Optical sensor platform based on cellulose nanocrystals (CNC)–4′-(hexyloxy)-4-biphenylcarbonitrile (HOBC) bi-phase nematic liquid crystal composite films // Carbohydrate polymers, 2017, v. 168, pp. 346–355. DOI: 10.1016/j.carbpol.2017.03.078

[131] Campbell C.E., Kattner U.R., Liu Z.K. The development of phase-based property data using the CALPHAD method and infrastructure needs // Integrating Materials and Manufacturing Innovation, 2014, v. 3, iss. 1, pp. 158–180. DOI: 10.1186/2193-9772-3-12

[132] Kattner U.R. The CALPHAD method and its role in material and process development // Tecnologia em Metalurgia, Materiais e Mineracao, 2016, v. 13, iss. 1, p. 3. DOI:10.4322/2176-1523.1059

[133] Al-Ghoul M. Generalized hydrodynamics of reaction-diffusion systems and dissipative structures // Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2004, v. 362, iss. 1821, pp. 1567–1581. DOI: 10.1098/rsta.2004.1396

[134] Chi G., Xue C. An overview of hydrodynamic studies of mineralization Author links open overlay panel // Geoscience Frontiers, 2011, v. 2, iss. 3, pp. 423–438. DOI: 10.1016/j.gsf.2011.05.001

[135] Rosu C., Manaila-Maximean D., Godinho M.H., Almeida P.L. Thermally stimulated depolarization currents and optical transmissionon liquid crystal/cellulose derivative composite devices // Molecular Crystals and Liquid Crystals, 2003, v. 391, iss. 1, pp. 1–11. DOI: 10.1080/10587250216170

[136] Maximean D.M., Bărar A., Ganea C.P., Almeida P.L., Dănilă O. Impedance spectroscopy and electro-optic switching times of a liquid crystal hydroxypropyl cellulose network composite // Proc. SPIE, 2018, v. 10977, p. 109770P. DOI: 10.1117/12.2326224

[137] McMaster M., Liu F., Christopherson W., Gross R.A., Singer K. Switchable Liquid Crystal Composite Windows Using Bacterial Cellulose (BC) Mat Substrates // ACS Applied Polymer Materials, 2019, v. 1, iss. 4, pp. 636–640. DOI: 10.1021/acsapm.9b00007

[138] Shao Z., Li Y., Wang, W. Study on Synthesis and Properties of Cellulose Triacetate for Liquid Crystal Display // Polymer Materials Science and Engineering, 2007, v. 23, iss. 4, pp. 71–73,77.

[139] Maximean D.M., Rosua C., Almeidab P., Kunduc S. Developments of cellulose based polymer dispersed liquid crystal devices // Proc. ECLC, 2009, p. 015.

[140] Shimamura S., Hisakado Y., Nishikawa N. Glucose compound, cellulose composition, cellulose film, polarizing plate and liquid crystal display device: U.S. Patent, 8497003, 2013.

[141] Vshivkov S.A., Rusinova B.V., Kudrevatyh N.V., Galjas A.G., Alekseeva M.S., Kuznecov D.K. Phase transitions of hydroxypropylcellulose liquid-crystalline solutions in magnetic field // Polymer Science Series A, 2006, v. 48, iss. 10, pp. 1115–1119. DOI: 10.1134/S0965545X06100142

[142] Vshivkov S.A., Rusinova E.V. Phase and Structural Transformations of Liquid Crystal Polymer Systems in Mechanical Field // Polymer Science Series A, 2008, v. 50, iss. 2, pp. 135–141. DOI: 10.1134/S0965545X08020065

[143] Вшивков С.А., Русинова Е.В. Фазовые и структурные превращения жидкокристаллических полимерных систем в механическом поле // Высокомолекулярные соединения. Сер. А, 2008. Т. 50. № 2. С. 237–244.

[144] Вшивков С. А., Галяс А. Г. Фазовые жидкокристаллические переходы полимерных систем в магнитном поле // Известия высших учебных заведений. Сер.: Химия и химическая технология, 2008. Т. 51. №. 5. С. 78–80.

[145] Ribotta R., Joets A. Defects and interactions with the structures in ehd convection in nematic liquid crystals // Cellular Structures in Instabilities. Springer, Berlin, Heidelberg, 1984, pp. 249–262. DOI: 10.1007/3-540-13879-X

[146] Kleman M., Lavrentovich O.D., Friedel J. Soft Matter Physics. An Introduction. New York, NY: Springer, 2004, pp. 658. DOI: 10.1007/b97416

[147] Horsthemke W., Lefever R. Noise-Induced Transitions: Theory and Applications in Physics, Chemistry, and Biology. Berlin: Springer-Verlag, 2002, p. 322. DOI: 10.1007/3-540-36852-3

[148] Вшивков С.А., Галяс А.Г., Куценко Л.И., Тюкова И.С., Терзиян Т.В., Шепетун А.В. Самоорганизация макромолекул и фазовые жидкокристаллические переходы в растворах эфиров целлюлозы // Высокомолекулярные соединения. Сер. А, 2011. Т. 53. № 1. С. 3–8.

[149] Vshivkov S.A., Galyas A.G. Mechanism of self-assembly of rigid-chain macromolecules of cellulose ethers in solutions // Polymer Science Series A, 2011, v. 53, iss. 11, pp. 1032–1039.

[150] Gradov O.V., Gradova M.A. Synchronization of photochemical processes and photoinduced self-organization in dispersed semiconductors under optical pumping // Proc. 3rd International Symposium «Molecular Photonics», 24–29 June 2012, Repino, Russia. St. Petersburg, 2012, p. 156. DOI: 10.13140/RG.2.1.3935.9521.

[151] Shibaev V.P., Bobrovsky A.Y. Liquid crystalline polymers: development trends and photocontrollable materials // Russian Chemical Reviews, 2017, v. 86, iss. 11, pp. 1024–1072.

[152] Goto H., Akagi K. Optically active electrochromism of poly (3, 4-ethylenedioxythiophene) synthesized by electrochemical polymerization in lyotropic liquid crystal of hydroxypropyl cellulose/water: active control of optical activity // Chemistry of Materials, 2006, v. 18, iss. 2, pp. 255–262. DOI: 10.1021/cm050755a

[153] Степанов Б.И. Основы спектроскопии отрицательных световых потоков. Минск: Изд-во Белорус. гос. ун-та им. В.И. Ленина, 1961. 123 с.

[154] Ivanov-Omskii V.I., Matveev B.A. Negative luminescence and devices based on this phenomenon // Semiconductors, 2007, v. 41, iss. 3, pp. 247–258.

[155] Klabunde K., Sergeev G. Nanochemistry. Amsterdam: Elsevier, 2013, p. 372. DOI: 10.1016/B978-0-444-51956-6.X5000-7

[156] Khoshkava V., Kamal M.R. Effect of drying conditions on cellulose nanocrystal (CNC) agglomerate porosity and dispersibility in polymer nanocomposites // Powder Technology, 2014, v. 261, pp. 288–298. DOI: 10.1016/j.powtec.2014.04.016

[157] Shipovskaja A.B., Timofeeva G.N. Liquid crystalline state in the polysaccharide-mesophazogenic solvent system // Engineering Physics J., 2006, v. 79, iss. 1, pp. 139–147.

[158] Вшивков С.А., Адамова Л.В., Русинова Е.В., Сафронов А.П., Древаль В.Е., Галяс А.Г. Термодинамика жидкокристаллических растворов гидроксипропилцеллюлозы в воде и этаноле // Высокомолекулярные соединения. Сер. А, 2007. Т. 49. № 5. С. 867–873.

[159] Вшивков С.А., Русинова Е.В. Фазовые жидкокристаллические переходы в деформируемых системах гидроксипропилцеллюлоза этанол и гидроксипропилцеллюлоза уксусная кислота // Высокомолекулярные соединения. Сер. Б, 2007. Т. 49. № 9. С. 1741–1744

[160] Кондрашина О.В., Артюхов В.Г., Сливкин А.И. Некоторые физико-химические свойства холестерической жидкокристаллической дисперсии, влияющие на ее способность к образованию металлорганических наночастиц // Вестник Воронежского государственного университета. Сер.: Химия. Биология. Фармация, 2012. № 1. С. 146–148.

[161] Ханчич О.А., Кузнецова С.А. Температурно-концентрационные условия образования жидкокристаллической фазы в простых и сложных эфирах целлюлозы в трифторуксусной кислоте // Высокомолекулярные соединения. Сер. А, 2011. Т. 53. № 4. С. 547–552.

[162] Вшивков С.А., Русинова Е.В. Влияние природы компонентов на жидкокристаллические переходы в растворах эфиров целлюлозы // Высокомолекулярные соединения. Сер. А, 2018. Т. 60. № 1. С. 66–75.

[163] Шиповская А.Б., Тимофеева Г.Н. Жидкокристаллическое состояние ацетатов целлюлозы: от прошлого к настоящему. Опыт саратовской школы // Химические волокна, 2006. № 1. С. 13–17.

[164] Куличихин В.Г., Голова Л.К. Жидкокристаллическое состояние целлюлозы и ее производных // Химия древесины, 1985. № 3. С. 9–27.

[165] Kalashnik A.T., Papkov S.P., Rudinskaya G.V., Milkova L.P. Liquid crystal state of cellulose // Polymer Science USSR, 1991, v. 33, iss. 1, pp. 107–112. DOI: 10.1016/0032-3950(91)90277-W

[166] Konovalova L.Y., Negodyaeva G.S., Kalashnik A.T., Rudinskaya G.V., Mil’kova L.P., Pozhalkin N.S., Iovleva M. Sorption studies of hydrated cellulose fibre having a liquid-crystal structure // Fibre Chemistry, 1994, v. 26, iss. 3, pp. 170–173. DOI: 10.1007/BF00545628

[167] Крестов Г.А., Мясоедова В.В., Алексеева О.В., Белов С.Ю. Жидкокристаллическое состояние целлюлозы и ее производных в неводных растворах // Докл. Академии наук СССР, 1987. Т. 293. № 1. С. 174–176.

[168] Шиповская А.Б., Казмичева О.Ф., Тимофеева Г.Н. Оптическая активность системы ацетат целлюлозы-мезофазогенный растворитель при, формировании лиотропной жидкокристаллической фазы // Биофизика, 2006. Т. 51. № 2. С. 256–266.

[169] Гриншпан Д.Д., Третьякова С.М., Цыганкова Н.Г., Макаревич С.Е., Савицкая Т.А. Фазовые равновесия в системах Na-соль сульфата ацетата целлюлозы-вода-спирт и критерий реализации жидкокристаллического состояния // Журнал физической химии, 2005. Т. 79. № 11. С. 1948–1954.

[170] Шиповская А.Б., Тимофеева Г.Н., Гегель Н.О., Щеголев С.Ю. Фазовое разделение и жидкокристаллическое состояние триацетата целлюлозы в нитрометане // Инженерно-физический журнал, 2008. Т. 81. № 6. С. 1178–1187.

[171] Садовой А.В., Шиповская А.Б., Названов В.Ф. Самоорганизация и электрооптические характеристики композита нематический жидкий кристалл-диацетат целлюлозы // Письма в Журнал технической физики, 2008. Т. 34. № 23. С. 15–20.

[172] Mewis J., Moldenaers P. Rheology of polymeric liquid crystals // Current Opinion in Colloid & Interface Science, 1996, v. 1, iss. 4, pp. 466–471.

[173] Semsarilar M., Tom J., Ladmiral V., Perrier S. Supramolecular hybrids of cellulose and synthetic polymers // Polymer Chemistry, 2012, v. 3, iss. 12, pp. 3266–3275. DOI: 10.1039/C2PY20385E

[174] Lehn J.M. Chemistry: Concepts and Perspectives // Weinheim, Wiley WCH, 1995, pp. 281. DOI: 10.1002/3527607439

[175] Куличихин В.Г., Макарова В.В., Толстых М.Ю., Васильев Г.Б. Фазовые равновесия в растворах производных целлюлозы и реологические свойства растворов в разных фазовых состояниях // Высокомолекулярные соединения. Сер. А, 2010. Т. 52. № 11. С. 2001–2013.

[176] Куличихин В.Г., Макарова В.В., Толстых М.Ю., Picken S.J., Mendes E. Эволюция структуры при течении жидкокристаллических растворов гидроксипропилцеллюлозы и нанокомпозитов на их основе // Высокомолекулярные соединения. Сер. А, 2011. Т. 53. № 9. С. 1494–1512.

[177] Алексеева О.В., Мясоедова В.В., Крестов Г.А. Реологические свойства системы целлюлоза-трифторуксусная кислота-хлороформ в жидкокристаллическом состоянии // Журнал физической химии, 1986. Т. 60. № 10. С. 2441–2445.

[178] Laszkiewicz B. Liquid crystal phenomena in cellulose-NMMO-H2O system // Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 2000, v. 353, iss. 1, pp. 127–131. DOI: 10.1080/10587250008025653

[179] Araki J., Kuga S. Effect of trace electrolyte on liquid crystal type of cellulose microcrystals // Langmuir, 2001, v. 17, iss. 15, pp. 4493–4496. DOI: 10.1021/la0102455

[180] Schroeder M. Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise. New York: W.H. Freeman, 1992, 429 p

[181] Mitchell G.R., Guo W., Davis F.J. Liquid crystal elastomers based upon cellulose derivatives // Polymer, 1992, v. 33, iss. 1, pp. 68–74. DOI: 10.1016/0032-3861(92)90561-A

[182] Bae J.W., Sohn E. H., Kang H. Liquid Crystal Alignment Behavior on Rubbed Films of Cellulose Acetate // Molecular Crystals and Liquid Crystals, 2016, v. 626, iss. 1, pp. 215–221. DOI: 10.1080/15421406.2015.1106886

[183] Lavrentovich O.D. Prepatterned liquid crystal elastomers as a step toward artificial morphogenesis // Proceedings of the National Academy of Sciences, 2018, v. 115, iss. 28, pp. 7171–7173. DOI: 10.1073/pnas.1809083115

[184] Suto S., Ito R., Karasawa M. Die swell of lyotropic liquid crystal: hydroxypropyl cellulose/water system // Polymer communications (Guildford), 1985, v. 26, iss. 11, pp. 335–336. DOI: 10.1002/app.1989.070370312

[185] Suto S., Yoshida S. Die swell of liquid crystal-forming solutions of hydroxypropyl cellulose through a long capillary die // Die Angewandte Makromolekulare Chemie: Applied Macromolecular Chemistry and Physics, 1995, v. 226, iss. 1, pp. 89–99. DOI: 10.1002/apmc.1995.052260109

[186] Geng Y., Almeida P.L., Feio G.M., Figueirinhas J.L., Godinho M.H. Water-based cellulose liquid crystal system investigated by rheo-NMR // Macromolecules, 2013, v. 46, iss. 11, pp. 4296–4302. DOI: 10.1021/ma400601b

[187] Echeverria C., Almeida P.L., Feio G., Figueirinhas J.L., Rey A.D., Godinho M.H. Rheo-NMR study of water-based cellulose liquid crystal system at high shear rates // Polymer, 2015, v. 65, pp. 18–25. DOI: 10.1016/j.polymer.2015.03.050

[188] Dong R.Y. NMR of cellulose nanocrystals, mesoporous media, and liquid crystal assemblies // Liquid Crystals, 2020, v. 47, iss. 13, pp. 1911–1925. DOI: 10.1080/02678292.2019.1613686

[189] Rauch E.M., Millonas M.M. The role of trans-membrane signal transduction in Turing-type cellular pattern formation // J. of theoretical biology, 2004, v. 226, iss. 4, pp. 401–407. DOI: 10.1016/j.jtbi.2003.09.018

[190] Fendler J.H. (ed.). Membrane-mimetic approach to advanced materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. DOI: 10.1007/BFb0020989

[191] Tu M., Han W., Zeng R., Best S.M., Cameron R.E. A study of surface morphology and phase separation of polymer/cellulose liquid crystal composite membranes // Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, v. 407, pp. 126–132. DOI: 10.1016/j.colsurfa.2012.05.019

[192] Han W., Tu M., Zeng R., Zhao J., Zhou C. Preparation, characterization and cytocompatibility of polyurethane/cellulose based liquid crystal composite membranes // Carbohydrate polymers, 2012, v. 90, iss. 3, pp. 1353–1361. DOI: 10.1016/j.carbpol.2012.07.004

[193] Hong Y.K., Cho B.H. Membrane from Liquid Crystal Composite of Cellulose Acetate and Poly (4-vinyl pyridine) // Textile Coloration and Finishing, 1991, v. 3, iss. 2, pp. 43–48.

[194] Chen L., Li X.G., Wang N.C. Structure and oxygen permselectivity of ethyl cellulose/liquid crystal composite membranes // Polymeric Materials Science & Engineering, (Chinese), 1993, v. 9, pp. 103.

[195] Dinarvand R., Khodaverdi E., Atyabi F., Erfan M. Thermoresponsive drug delivery using liquid crystal-embedded cellulose nitrate membranes // Drug Delivery, 2006, v. 13, iss. 5, pp. 345–350. DOI: 10.1080/10717540500394729

[196] Atyabi F., Khodaverdi E., Dinarvand R. Temperature modulated drug permeation through liquid crystal embedded cellulose membranes // International J. of Pharmaceutics, 2007, v. 339, iss. 1–2, pp. 213–221. DOI: 10.1016/j.ijpharm.2007.03.004

[197] Sakaguchi H., Iida T., Saito S., Fukui Y. Color responses of cholesteric liquid-crystal ethyl cellulose composite membranes exposed to fatty-acids and amines // Chemical Senses, 1984, v. 9, iss. 1, pp. 82–82.

[198] Prigogine I. From being to becoming: time and complexity in the physical sciences. San Francisco, Freeman and Company, 1981, p. 272.

[199] Zhang Y., Wan X., Mo M., Li D. Preparation of cellulose nanocrystal film and cholesteric liquid crystal pattern // J. of Forestry Engineering, 2017, v. 2, iss. 4, pp. 103–108.

[200] Li X.G., Huang M.R., Hu L., Lin G., Yang P.C. Cellulose derivative and liquid crystal blend membranes for oxygen enrichment // European Polymer J., 1999, v. 35, iss. 1, pp. 157–166. DOI: 10.1016/S0014-3057(98)00088-3

[201] Zhao J.P., Zeng R., Zhao J.H., Tu M., Wu H., Zha Z., Zhang J. Study on the blood anticoagulation of heparin-functionalized hydroxypropyl cellulose liquid crystal // Gongneng Cailiao (J. of Functional Materials), 2014, v. 45, iss. 8, pp. 08092–08096. DOI: 10.3969/j.issn.1001-9731.2014.08.020

[202] Huang Y., Luo X., Ma D. Effect of the Molecular Weight of Polycaprolactone on the Lyotropic Liquid Crystal Textures of Polycaprolactone / Ethyl Cellulose Blends // J. of Functional Polymers, 2001, v. 14, iss. 1, pp. 49–52.

[203] Gong L., Zeng R., Ye J.Y., Tu M., Zhao J.H., Zhou C.R. Synthesis and characterization of hydroxypropyl cellulose propionate (PPC) liquid crystal and protein adsorption of PPC/PVC blend films // Gongneng Cailiao (J. of Functional Materials), 2010, v. 8, pp. 1398–1401.

[204] Eguchi N., Kawabata K., Goto H. Synthesis of electro-optically active polymer composite of poly [2, 2’-bis (3, 4-ethylenedioxythiophene)-alt-fluorene]/hydroxypropyl cellulose showing liquid crystal structure // Express Polymer Letters, 2017, v. 11, iss. 10, pp. 846–851 DOI: 10.3144/expresspolymlett.2017.80

[205] Vshivkov S.A., Rusinova E.V. Liquid crystal phase transitions and rheological properties of cellulose ethers // Russian J. of Applied Chemistry, 2011, v. 84, iss. 10, pp. 1830–1835. DOI: 10.1134/S1070427211100260

[206] Shipovskaya A.B., Timofeeva G.N., Gegel N.O., Shchegolev S.Y. Phase separation and liquid-crystal state of cellulose triacetate in nitromethane // J. of Engineering Physics and Thermophysics, 2008, v. 81, iss. 6, pp. 1222–1231. DOI: 10.1007/s10891-009-0141-9

[207] Yim C.T., Gilson D.F.R., Kondo T., Gray D.G. Order parameters and side-chain conformation in ethyl cellulose/chloroform liquid crystal phases // Macromolecules, 1992, v. 25, iss. 13, pp. 3377–3380. DOI: 10.1021/ma00039a010

[208] Lirova B.I., Lyutikova E.A. Formation of the liquid crystal state of cellulose diacetate in nitromethane vapor: A fourier IR study // Russian J. of Applied Chemistry, 2012, v. 85, iss. 10, pp. 1617–1621. DOI: 10.1134/S1070427212100242

[209] Honorato-Rios C., Kuhnhold A., Bruckner J.R., Dannert R., Schilling T., Lagerwall J.P. Equilibrium liquid crystal phase diagrams and detection of kinetic arrest in cellulose nanocrystal suspensions // Frontiers in Materials, 2016, pp. 21. DOI: 10.3389/fmats.2016.00021

[210] Rosantsev E.G., Khanchich O.A., Loshadkin D.V. Fractal Geometry of Polymeric Liquid-Crystal System Formation in Cellulose Derivatives // Russian Polymer News, 2001, v. 6, pp. 33–37.

[211] Khanchich O.A., Loshadkin D.V. Liquid-Crystal Phase Formation in Concentrated Cellulose Solutions // Russian Polymer News, 2001, v. 6, pp. 8–12.

[212] Liu D., Li J., Sun F., Xiao R., Guo Y., Song J. Liquid crystal microphase separation of cellulose nanocrystals in wet-spun PVA composite fibers // RSC Advances, 2014, v. 4, iss. 58, pp. 30784–30789. DOI: 10.1039/C4RA04063E

[213] Reis D., Vian B., Chanzy H., Roland J.C. Liquid crystal-type assembly of native cellulose-glucuronoxylans extracted from plant cell wall // Biology of the Cell, 1991, v. 73, iss. 2–3, pp. 173–178. DOI: 10.1016/0248-4900(91)90100-2

[214] Sadovoy A.V., Shipovskaya A.B., Nazvanov V.F. Self-organization and electrooptical characteristics of a nematic liquid crystal-cellulose diacetate composite // Technical Physics Letters, 2008, v. 34, iss. 12, pp. 1002–1004. DOI: 10.1134/S1063785008120031

[215] Sadovoy A.V., Shipovskaya A.B. Transmission and small-angle scattering of light by nematic liquid crystal-cellulose diacetate composite with self-organized structure // Technical Physics Letters, 2010, v. 36, iss. 12, pp. 1150–1153. DOI: 10.1134/S1063785010120254

[216] Lagerwall J.P., Schütz C., Salajkova M., Noh J., Hyun Park J., Scalia G., Bergström L. Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films // NPG Asia Materials, 2014, v. 6, iss. 1, p. 80.

DOI: 10.1038/am.2013.69

[217] Han Y., Bizmark N., Abukhdeir N.M., Ioannidis M.A. Dynamics of ethyl cellulose nanoparticle self-assembly at the interface of a nematic liquid crystal droplet // Physical Chemistry Chemical Physics, 2017, v. 19, iss. 36, pp. 24955–24960. DOI: 10.1039/C7CP04421F

[218] Lochhead R.Y., Welch C.F. Effect of hydrophobically-modified hydroxy ethyl cellulose on the phase morphology and rheology of a model surfactant mesophase system in the liquid crystal regime // Abstracts of Papers of the American Chemical Society, 2001, v. 222, pp. U377

[219] Matsumori M. Takahashi A., Tomioka Y., Hikima T., Takata M., Kajitani T., Fukushima T. Photoalignment of an azobenzene-based chromonic liquid crystal dispersed in triacetyl cellulose: single-layer alignment films with an exceptionally high order parameter // ACS applied materials & interfaces, 2015, v. 7, iss. 21, pp. 11074–11078. DOI: 10.1021/acsami.5b02577

[220] Song W., Liu D., Prempeh N., Song R. Fiber alignment and liquid crystal orientation of cellulose nanocrystals in the electrospun nanofibrous mats // Biomacromolecules, 2017, v. 18, iss. 10, pp. 3273–3279. DOI: 10.1021/acs.biomac.7b00927

[221] Shipovskaya A.B., Gegel N.O., Timofeeva G.N. Orientation processes in cellulose acetate under the action of dimethyl sulfoxide vapor // Russian J. of Applied Chemistry, 2008, v. 81, iss. 6, pp. 1052–1056. DOI: 10.1134/S1070427208060256

[222] Gradov O.V., Gradova M.A. Microwave-Induced Self-Organization of Liophilic Colloids During Enhanced Hydrolytic Polymerization // 2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE). IEEE, 2020, pp. 932–936. DOI:10.1109/EFRE47760.2020.9242115

[223] Praisner T.J., Sabatino D.R., Smith C.R. Simultaneously combined liquid crystal surface heat transfer and PIV flow-field measurements // Experiments in Fluids, 2001, v. 30, iss. 1, pp. 1–10. DOI: 10.1007/s003480000136

[224] Efstratiou M., Christy J., Sefiane K. Crystallization-driven flows within evaporating aqueous saline droplets // Langmuir, 2020, v. 36, iss. 18, pp. 4995–5002. DOI: 10.1021/acs.langmuir.0c00576

[225] Facchine E., Jin S., Spontak R., Rojas O., Khan S., Team S. K. Liquid crystal ordering transition and colloidal interactions of cellulose nanocrystals (CNCs) // APS March Meeting Abstracts, 2018, v. 2018. pp. E57.006.

[226] Xu Y., Atrens A., Stokes J.R. A review of nanocrystalline cellulose suspensions: Rheology, liquid crystal ordering and colloidal phase behaviour // Advances in Colloid and Interface Science, 2020, v. 275, p. 102076. DOI: 10.1016/j.cis.2019.102076

[227] Wissler J.H. Bioreactors with laminar and defined gradient hydrodynamics: hydraulic culture of cells for assessment of effectors controlling regenerative tissue morphogenesis in wound healing // Protides of the Biological Fluids. Elsevier, 1985, v. 33, pp. 643–650. DOI: 10.1016/B978-0-08-033215-4.50158-8

[228] Bolkhovitinov A.S. Hydrodynamic Engineering Approaches for Modeling of the Surface Cell Morphogenesis as Applications of Rosen’s Optimality Theory // J. of Medical and Bioengineering, 2013, v. 2, iss. 4, pp. 279–289. DOI: 10.12720/jomb.2.4.279-289

[229] Diewald U., Preusser T., Rumpf M. Anisotropic diffusion in vector field visualization on euclidean domains and surfaces // IEEE Transactions on Visualization and Computer Graphics, 2000, v. 6, iss. 2, pp. 139–149. DOI: 10.1109/2945.856995

[230] Gradov O.V., Orehov T.K. Computer-assisted SPIM-like methods (SPIM, mSPIM, MuViSPIM & PIV/LDV/LDA/LDF based on SPIM-like setups) as novel tools for dynamic analysis of supercritical fluid fluxes and oriented complex fluids with soft matter structures // Computational Nanotechnology, 2018, iss. 4, pp. 17–24.

[231] Filip D., Costa I., Figueirinhas J.L., Godinho M.H. Strain-induced matrix and droplets anisotropic deformation in liquid crystalline cellulose dispersed liquid crystal films // Composite Interfaces, 2006, v. 13, iss. 4–6, pp. 477–486. DOI: 10.1163/156855406777408539

[232] Lista M., Orentas E., Areephong J., Charbonnaz P., Wilson A., Zhao Y., Matile S. Self-organizing surface-initiated polymerization, templated self-sorting and templated stack exchange: synthetic methods to build complex systems // Organic & Biomolecular Chemistry, 2013, v. 11, iss. 11, pp. 1754–1765. DOI: 10.1039/C3OB27303B

[233] Perekrestov V.I., Davydenko T.O. Role of interdependence dissipative and conservative self-organization in obtaining low-dimensional 3D-systems // 22nd International Crimean Conf. «Microwave & Telecommunication Technology», 10–14 Sept. 2012. IEEE, 2012, pp. 667–668.

[234] Giese M., Blusch L.K., Khan M.K., MacLachlan M.J. Functional materials from cellulose-derived liquid-crystal templates // Angewandte Chemie International Edition, 2015, v. 54, iss. 10, pp. 2888–2910. DOI: 10.1002/anie.201407141

[235] Risteen B.E., Blake A., McBride M.A., Rosu C., Park J.O., Srinivasarao M., Reichmanis E. Enhanced alignment of water-soluble polythiophene using cellulose nanocrystals as a liquid crystal template // Biomacromolecules, 2017, v. 18, iss. 5, pp. 1556–1562, DOI: 10.1021/acs.biomac.7b00121

[236] Kashyap S., Saxena S.K., Gupta S.J., Mahajan J. Thermal behavior of nano cellulose doped polymer dispersed liquid crystal (PDLC) // AIP Conference Proceedings, 2016, v. 1728, iss. 1, p. 020632. DOI: 10.1063/1.4946683

[237] Ishizaki T., Uenuma S., Furumi S. Thermotropic properties of cholesteric liquid crystal from hydroxypropyl cellulose mixed esters // Kobunshi Ronbunshu, 2015, v. 72, iss. 12, pp. 737–745. DOI: 10.1295/koron.2015-0029

[238] Qin W., Li Z., Li J., Zhang L., Liu R., Liu H. Synthesis and characterization of azobenzene hydroxypropyl cellulose with photochromic and thermotropic liquid crystal properties // Cellulose, 2015, v. 22, iss. 1, pp. 203–214. DOI: 10.1007/s10570-014-0479-9

[239] Huang X., Wang N., Wang W., Zhang H., Mo Z. Studies on the Blends of Thermotropic Liquid Crystal Polymer Ethyl Cellulose and Nylon-1010 // Acta Polymerica Sinica, 1995, pp. 709–712.

[240] Ruan W.H., Shen J.W., Li B.Q. Studies on nucleation of cellulose aromatic ester thermotropic liquid crystal on polyethylene terephthalate // Chemical J. of Chinese Universities – Chinese, 1998, v. 19, iss. 3, pp. 469–471.

[241] Roşu C., Mănăilă-Maximean D., Godinho H.M., Almeida L.P. Thermally stimulated depolarization currents and optical transmission measurements on liquid crystal/cellulose derivative composite devices // Mol. Cryst. Liq. Cryst, 2002, v. 391, pp. 1–11.

DOI: 10.1080/10587250216170

[242] Lin S.Y., Chen K.S., Lin Y.Y. Thermo-responsive function of liquid crystal-embedded cellulose nitrate membrane influenced by the pore size of membrane // Pharmaceutical and Pharmacological Letters, 1995, v. 5, iss. 4, pp. 159–161.

[243] Yousefi A., Khodaverdi E., Atyabi F., Dinarvand R. Thermosensitive drug permeation through liquid crystal-embedded cellulose nitrate membranes // PDA J. of Pharmaceutical Science and Technology, 2010, v. 64, iss. 1, pp. 54–62.

[244] Wang F., Han L., Wang H., Ma C., Liu L., Wang J., Li J., Huang Z. Study on preparation and thermal conductivity of liquid crystal epoxy resin filled with nano-cellulose / BNNSs // Proc. 2nd International Conf. on Electrical Materials and Power Equipment (ICEMPE). Guangzhou, China, 2019, pp. 321–324. DOI: 10.1109/ICEMPE.2019.8727321

[245] Dong Y.M., Zhao Y.Q., Zeng E.M., Yang L.L., Ge Q., Hu X.L. A Dendronized Cellulose Derivative and Its Thermotropic Liquid Crystal and Lyotropic Cholesteric Liquid Crystal Behaviors // Advanced Materials Research, 2011, v. 239, pp. 2620–2623.

DOI: 10.4028/www.scientific.net/AMR.239-242.2620

[246] Violi A., Izvekov S., Voth G.A. Carbonaceous nanoparticle self-assembly in combustion // Proc. 4th Joint Meeting of the US Sections of the Combustion Institute. Pittsburg, USA, 2005. URL: https://cutt.us/ECfOD

[247] Saha B., Shindo S., Irle S., Morokuma K. Quantum chemical molecular dynamics simulations of dynamic fullerene self-assembly in benzene combustion // ACS Nano, 2009, v. 3, iss. 8, pp. 2241–2257. DOI: 10.1021/nn900494s

[248] Thiruvengadathan R., Staley C., Geeson J.M., Chung S., Raymond K.E., Gangopadhyay K., Gangopadhyay S. Enhanced Combustion Characteristics of Bismuth Trioxide-Aluminum Nanocomposites Prepared through Graphene Oxide Directed Self-Assembly // Propellants, Explosives, Pyrotechnics, 2015, v. 40, iss. 5, pp. 729–734. DOI: 10.1002/prep.201400238

[249] Malchi J.Y. Combustion and self-assembly of nanoenergetic materials. PhD Thesis. The Pennsylvania State University, 2008.

[250] Francis W. Coal, its formation and composition. New York: St. Martin’s Press, 1954, p. 567.

[251] Linlin D., Wei L., Jun C., Ban L., Shouxin L. Formation, tuning and application of chiral nematic liquid crystal phase based on nanocrystalline cellulose // Progress in Chemistry, 2015, v. 27, iss. 7, pp. 861–869. DOI: 10.7536/PC141239

[252] Rimmer S.M., Yoksoulian L.E., Hower J.C. Anatomy of an intruded coal, I: Effect of contact metamorphism on whole-coal geochemistry, Springfield (No. 5) (Pennsylvanian) coal, Illinois Basin // International J. of Coal Geology, 2009, v. 79, iss. 3, pp. 74–82. DOI: 10.1016/j.coal.2009.06.002

[253] Yoksoulian L.E., Rimmer S.M., Rowe H.D. Anatomy of an intruded coal, II: effect of contact metamorphism on organic δ13C and implications for the release of thermogenic methane, Springfield (No. 5) Coal, Illinois Basin // International J. of Coal Geology, 2016, v. 158, pp. 129–136. DOI: 10.1016/j.coal.2016.03.009

[254] Xiaoming L.I., Daiyong C.A.O., Demin L.I.U. Structure of different types of coal metamorphism by HTEM // Mining Science and Technology (China), 2010, v. 20, iss. 6, pp. 835–838. DOI: 10.1016/S1674-5264(0960291-X

[255] Pan J., Lv M., Bai H., Hou Q., Li M., Wang Z. Effects of metamorphism and deformation on the coal macromolecular structure by laser Raman spectroscopy // Energy & Fuels, 2017, v. 31, iss. 2, pp. 1136–1146. DOI: 10.1021/acs.energyfuels.6b02176

[256] Hower J.C., Davis A. Application of vitrinite reflectance anisotropy in the evaluation of coal metamorphism // Geological Society of America Bulletin, 1981, v. 92, iss. 6, pp. 350–366. DOI: 10.1130/SPE153-p95

[257] Thompson R.R., Benedict L.G. Vitrinite reflectance as an indicator of coal metamorphism for cokemaking // Geol. Soc. Am., Spec. Pap, 1974, v. 153, pp. 95–108.

[258] Sen J. Fine structure in degraded, ancient and buried wood, and other fossilized plant derivatives // The Botanical Review, 1956, v. 22, iss. 6, pp. 343–374. DOI: 10.1007/BF02860822

[259] Rials T.G., Glasser W.G. Multiphase materials with lignin: 5. Effect of lignin structure on hydroxypropyl cellulose blend morphology // Polymer, 1990, v. 31, iss. 7, pp. 1333–1338. DOI: 10.1016/0032-3861(90)90226-O

[260] Rials T.G., Glasser W.G. Multiphase materials with lignin. IV. Blends of hydroxypropyl cellulose with lignin // J. of Applied Polymer science, 1989, v. 37, iss. 8, pp. 2399–2415. DOI: 10.1002/APP.1989.070370827

[261] Rials T.G., Glasser W.G. Multiphase materials with lignin. VI. Effect of cellulose derivative structure on blend morphology with lignin // Wood and fiber science, 1989, v. 21, iss. 1, pp. 80–90.

[262] Antoshchenko M., Tarasov V., Zakharova O., Zolotarova O., Petrov A. Analysis of metamorphism and tendency of black coals to spontaneous combustion // Technology Audit and Production Reserves, 2019, v. 6, iss. 1, pp. 18–25. DOI: 10.15587/2312-8372.2019.191902

[263] Kaneko T., Kaneko D., Wang S. High-performance lignin-mimetic polyesters // Plant Biotechnology, 2010, v. 27, iss. 3, pp. 243–250. DOI: 10.5511/plantbiotechnology.27.243

[264] Davé V., Prasad A., Marand H., Glasser W.G. Molecular organization of lignin during carbonization // Polymer, 1993, v. 34, iss. 15, pp. 3144–3154. DOI: 10.1016/0032-3861(93)90382-K

[265] Belousova O.A., Pavlovich O.N. Study of separation of the absorptive fraction of coal tar as polyazeotropic mixture // Coke and Chemistry, 2011, v. 54, iss. 8, pp. 297–298. DOI: 10.3103/S1068364X11080035

[266] Markova K., Vladimirov V., Vuchev V. Autoxidation processes during the genesis of low rank coal lithotypes // Oxidation Communications, 2006, v. 29, iss. 2, p. 454.

[267] Zhu C., Xu F., Chen C. Study on thermal evolution and coal metamorphism of the Longfan coal series in Nanton mining area // Zhongguo Kuangye Daxue Xuebao (J. of China University of Mining and Technology), 1996, v. 25, iss. 4, pp. 38–44.

[268] Kanana Y.F., Matveyev A.K. Temperature and geologic time in the regional metamorphism of coal // International Geology Review, 1989, v. 31, iss. 3, pp. 258–261. DOI: 10.1080/00206818909465878

[269] Yang Q., Tang D.Z. Effect of coal metamorphism on methane content and permeability of coal in North China // Earth Science – J. of China University of Geoscience, 2000, v. 25, iss. 3, pp. 273–278.

[270] Dudzińska A., Żyła M., Cygankiewicz J. Influence of The Metamorphism Grade and Porosity of Hard Coal on Sorption and Desorption of Propane (Wpływ Stopnia Metamorfizmu I Porowatości Węgli Kamiennych Na Sorpcję I Desorpcję Propanu) // Archives of Mining Sciences, 2013, v. 58, iss. 3, pp. 867–879. DOI: 10.2478/amsc-2013-0060

[271] Castano J.R. Application of coal petrographic methods in relating level of organic metamorphism to generation of petroleum // AAPG Bulletin, 1973, v. 57, iss. 4, pp. 772–773. DOI: 10.1306/819A435E-16C5-11D7-8645000102C1865D

[272] Hood A., Gutjahr C.C.M., Heacock R.L. Organic metamorphism and the generation of petroleum // AAPG bulletin, 1975, v. 59, iss. 6, pp. 986–996. DOI: 10.1306/83D91F06-16C7-11D7-8645000102C1865D

[273] Sheta S., Afgan M.S., Hou Z., Yao S. C., Zhang L., Li Z., Wang Z. Coal analysis by laser-induced breakdown spectroscopy: a tutorial review // J. of Analytical Atomic Spectrometry, 2019, v. 34, iss. 6, pp. 1047–1082. DOI: 10.1039/C9JA00016J

[274] John R.C. Slag, gas, and deposit thermochemistry in a coal gasifier // J. of the Electrochemical Society, 1986, v. 133, iss. 1, p. 205. DOI: 10.1149/1.2108525

[275] Teng T., Wang J.G., Gao F., Ju Y. Complex thermal coal-gas interactions in heat injection enhanced CBM recovery // J. of Natural Gas Science and Engineering, 2016, v. 34, pp. 1174–1190. DOI: 10.1016/j.jngse.2016.07.074

[276] Drossel B., Schwabl F. Self organization in a forest-fire model // Fractals, 1993, v. 1, iss. 4, pp. 1022–1029. DOI: 10.1142/S0218348X93001118

[277] Scholl A.E., Taylor A.H. Fire regimes, forest change, and self-organization in an old-growth mixed-conifer forest, Yosemite National Park, USA // Ecological Applications, 2010, v. 20, iss. 2, pp. 362–380. DOI: 10.1890/08-2324.1

[278] Tzamtzis N., Pappa A., Statheropoulos M., Fasseas C. Effects of fire retardants on the pyrolysis of Pinus halepensis needles using microscopic techniques // J. of Analytical and Applied Pyrolysis, 2002, v. 63, iss. 1, pp. 147–156. DOI: 10.1016/S0165-2370(01)00147-4

[279] Liodakis S., Vorisis D., Agiovlasitis I.P. Testing the retardancy effect of various inorganic chemicals on smoldering combustion of Pinus halepensis needles // Thermochimica Acta, 2006, v. 444, iss. 2, pp. 157–165. DOI: 10.1016/j.tca.2006.03.010

[280] Pappa A., Mikedi K., Tzamtzis N., Statheropoulos M. TG-MS analysis for studying the effects of fire retardants on the pyrolysis of pine-needles and their components // J. of thermal analysis and calorimetry, 2006, v. 84, iss. 3, pp. 655–661. DOI: 10.1007/s10973-005-7201-y

[281] Liodakis S., Katsigiannis G., Lymperopoulou T. Ash properties of Pinus halepensis needles treated with diammonium phosphate // Thermochimica Acta, 2007, v. 453, iss. 2, pp. 136–146. DOI: 10.1016/j.tca.2006.11.022

[282] Agueda A., Liodakis S., Pastor E., Planas E. Characterization of the thermal degradation and heat of combustion of Pinus halepensis needles treated with ammonium-polyphosphate-based retardants // J. of Thermal Analysis and Calorimetry, 2009, v. 98, iss. 1, pp. 235–243. DOI: 10.1007/s10973-009-0134-0

[283] Liodakis S., Tsapara V., Agiovlasitis I. P., Vorisis D. Thermal analysis of Pinus sylvestris L. wood samples treated with a new gel–mineral mixture of short-and long-term fire retardants // Thermochimica Acta, 2013, v. 568, pp. 156–160. DOI: 10.1016/j.tca.2013.06.011

[284] Godinho M.H., Canejo J.P., Feio G., Terentjev E.M. Self-winding of helices in plant tendrils and cellulose liquid crystal fibers // Soft Matter, 2010, v. 6, iss. 23, pp. 5965–5970. DOI: 10.1039/C0SM00427H

[285] Geng Y., Almeida P.L., Fernandes S.N., Cheng C., Palffy-Muhoray P., Godinho M.H. A cellulose liquid crystal motor: a steam engine of the second kind // Scientific Reports, 2013, v. 3, iss. 1, pp. 1–5. DOI: 10.1038/srep01028

[286] Gilman J.W., Kashiwagi T., Lichtenhan J.D. Nanocomposites: a revolutionary new flame retardant approach // SAMPE Journ., 1997, v. 33, pp. 40–46.

[287] Lipska A.E. Isothermal degradation of untreated and fire retardant treated cellulose AT 350C. Naval Radiological Defense Lab San Francisco Calif, 1967, URL: https://apps.dtic.mil/sti/citations/AD0658717

[288] Garba B., Eboatu A.N., Atta-Elmannan M.A. Note: Effect of flame retardant treatment on energy of pyrolysis/combustion of wood cellulose // Fire and Materials, 1994, v. 18, iss. 6, pp. 381–383. DOI: 10.1002/fam.810180605

[289] Dollimore D., Hoath J. The fire retardant behavior of various chlorides on cellulose // J. of Thermal Analysis and Calorimetry, 1997, v. 49, iss. 2, pp. 649–656. DOI: 10.1007/BF01996747

[290] Rol F., Belgacem N., Meyer V., Petit-Conil M., Bras J. Production of fire-retardant phosphorylated cellulose fibrils by twin-screw extrusion with low energy consumption // Cellulose, 2019, v. 26, iss. 9, pp. 5635–5651. DOI: 10.1007/s10570-019-02447-4

[291] Ghanadpour M. Cellulose-based fire retardant material // Abstracts of Papers of the American Chemical Society, 2014, v. 247, p. 247.

[292] Cheng B.W. Study on properties and mechanism of eco-friendly fire-retardant cellulose // Journal of Tianjin Institute of Textile Science and Technology, 2005. v. 25, iss. 1, pp. 1–3.

[293] Zheng C., Li D., Ek M. Bio-based fire retardant and its application in cellulose-based thermal insulation materials // Abstracts of Papers of the American Chemical Society. American Chemical Society (ACS), 2018, v. 255, URL: https://cutt.us/yJXYk

[294] Gao M., Yan Y. Q. Fire Retardant Cellulose Characterized by Thermal Degradation Behavior // Advanced Materials Research, 2011, v. 197, pp. 631–634. DOI: 10.4028/www.scientific.net/AMR.197-198.631

[295] Liu A., Berglund L.A. Fire-retardant and ductile clay nanopaper biocomposites based on montmorrilonite in matrix of cellulose nanofibers and carboxymethyl cellulose // European Polymer J., 2013, v. 49, iss. 4, pp. 940–949.

[296] Medina L., Carosio F., Berglund L. Mechanically strong and fire-retardant nanocomposite aerogels based on cellulose nanofibers and montmorillonite clay // Abstract of Papers of the American Chemical Society, 2016. v. 252, URL: https://cutt.us/6WDHN

[297] Sahoo P.K., Jena D.K. Synthesis and study of mechanical and fire retardant properties of (carboxymethyl cellulose-g-polyacrylonitrile) / Montmorillonite biodegradable nanocomposite // J. of Polymer Research, 2018, v. 25, iss. 12, pp. 1–10. DOI: 10.1007/s10965-018-1659-3

[298] Castro D.O., Karim Z., Medina L., Häggström J.O., Carosio F., Svedberg A., Berglund L.A. The use of a pilot-scale continuous paper process for fire retardant cellulose-kaolinite nanocomposites // Composites Science and Technology, 2018, v. 162, pp. 215–224. DOI: 10.1016/j.compscitech.2018.04.032

[299] Liu P., Dai J., Jia H., Wang S. A Study on the Properties of Nano-SiO2 / Cellulose Fire-retardant Membranes // Advanced Textile Technology, 2010, v. 3, URL: https://cutt.us/TRdF1

[300] Чухров Ф.В. Коллоиды в земной коре. АН СССР, 1955. C. 671.

[301] Perel’man A.I. Geochemistry of Epigenesis. New York: Plenum Press, 1967, p. 266. DOI: 10.1007/978-1-4684-7520-3

[302] Rasmussen T.V. Insulation materials of cellulose versus mineral wool, fiberglass or Perlite. Exposures to fibers, dust, endotoxin and fire retardant additives during installation // Ikke angivet — Institutet för Arbetshygien, 2003, v. 49, pp. 187–188.

[303] Xu R., Wang H. Y., Sun R., Lei S. Outline of preparation and fire-retardant properties detection of nanocrystalline cellulose fire-retardant membranes // Guangzhou Chemical Industry, 2012, v. 22, pp. 8, 9, 28. URL(1). https://caod.oriprobe.com/articles/31453141/Outline_of_Preparation_and_Fire__retardant_Propert.htm; URL(2): https://caod.oriprobe.com/order.htm?id=31453141

[304] Bajwa D.S., Rehovsky C., Shojaeiarani J., Stark N., Bajwa S., Dietenberger M.A. Functionalized cellulose nanocrystals: A potential fire retardant for polymer composites // Polymers, 2019, v. 11, iss. 8. pp. 1361. DOI: 10.3390/polym11081361

[305] Takey E., Taussarova B., Burkitbay A. Fire retardant of cellulose textile materials based on sol-gel composition // Chemical J. of Kazakhstan, 2018, v. 63, iss. 3, pp. 163–168.

[306] Bertelli G., Camino G., Marchetti E., Costa L., Locatelli R. Structural studies on chars from fire retardant intumescent systems // Die Angewandte Makromolekulare Chemie: Applied Macromolecular Chemistry and Physics, 1989, v. 169, iss. 1, pp. 137–142. DOI: 10.1002/apmc.1989.051690112

[307] Sweet M.S., Winandy J.E. Influence of degree of polymerization of cellulose and hemicellulose on strength loss in fire-retardant-treated southern pine, 1999, v. 53, iss. 3, pp. 311–317. DOI: 10.1515/HF.1999.051

[308] Liodakis S., Tsoukala M. Ash leaching of forest species treated with phosphate fire retardants // Water, Air, and Soil Pollution, 2009, v. 199, iss. 1–4. pp. 171–182. DOI: 10.1007/s11270-008-9869-7

[309] Onofrei M.D., Dobos A.M., Stoica I., Olaru N., Olaru L., Ioan S. Lyotropic liquid crystal phases in cellulose acetate phthalate/hydroxypropyl cellulose blends // J. of Polymers and the Environment, 2014, v. 22, iss. 1, pp. 99–111. DOI: 10.1007/s10924-013-0618-7

[310] Mandlekar N., Cayla A., Rault F., Giraud S., Salaün F., Malucelli G., Guan J. P An overview on the use of lignin and its derivatives in fire retardant polymer systems // Lignin – Trends and Applications, 2018, v. 9, pp. 207–231. DOI: 10.5772/intechopen.72963

[311] Saxena N.K., Mathur A., Gupta D.R. Fire Retardant Lignin Based Adhesives for Wood Based Materials // The Fire Engineer, 1989, v. 1, pp. 23–26.

[312] Shukla A., Sharma V., Basak S., Ali S.W. Sodium lignin sulfonate: a bio-macromolecule for making fire retardant cotton fabric // Cellulose, 2019, v. 26, iss. 13, pp. 8191–8208. DOI: 10.1007/s10570-019-02668-7

[313] Mandlekar N., Cayla A., Rault F., Giraud S., Salaün F., Guan J. Valorization of industrial lignin as biobased carbon source in fire retardant system for Polyamide 11 blends // Polymers, 2019, v. 11, iss. 1, p. 180. DOI: 10.3390/polym11010180

[314] Mandlekar N., Malucelli G., Cayla A., Rault F., Giraud S., Salaün F., Guan J. Fire retardant action of zinc phosphinate and polyamide 11 blend containing lignin as a carbon source // Polymer Degradation and Stability, 2018, v. 153, pp. 63–74. DOI: 10.1016/j.polymdegradstab.2018.04.019

[315] Xing W., Yuan H., Yang H., Song L., Hu Y. Functionalized lignin for halogen-free flame retardant rigid polyurethane foam: preparation, thermal stability, fire performance and mechanical properties // J. of Polymer Research, 2013, v. 20, iss. 9, pp. 1–12. DOI: 10.1007/s10965-013-0234-1

[316] Verdolotti L., Oliviero M., Lavorgna M., Iannace S., Camino G., Vollaro P., Frache A. On revealing the effect of alkaline lignin and ammonium polyphosphate additives on fire retardant properties of sustainable zein-based composites // Polymer Degradation and Stability, 2016, v. 134, pp. 115–125. DOI: 10.1016/j.polymdegradstab.2016.10.001

[317] Zhou S., Tao R., Dai P., Luo Z., He M. Two-step fabrication of lignin-based flame retardant for enhancing the thermal and fire retardancy properties of epoxy resin composites // Polymer Composites, 2020, v. 41, iss. 5, pp. 2025–2035. DOI: 10.1002/pc.25517

[318] Chen S., Lin S., Hu Y., Ma M., Shi Y., Liu J., Wang X. A lignin-based flame retardant for improving fire behavior and biodegradation performance of polybutylene succinate // Polymers for Advanced Technologies, 2018, v. 29, iss. 12, pp. 3142–3150. DOI: 10.1002/pat.4436

[319] Wang R., Xu Z. Pyrolysis characteristics and pyrolysis products separation for recycling organic materials from waste liquid crystal display panels // J. of Hazardous Materials, 2016, v. 302, pp. 45–56. DOI: 10.1016/j.jhazmat.2015.09.038

[320] Sudhakara P., Kannan P. Diglycidylphenylphosphate based fire retardant liquid crystalline thermosets // Polymer Degradation and Stability, 2009, v. 94, iss. 4, pp. 610–616. DOI: 10.1016/j.polymdegradstab.2009.01.005

[321] Guittard F., de Givenchy E.T., Geribaldi S., Cambon A. Highly fluorinated thermotropic liquid crystals: an update // J. of Fluorine Chemistry, 1999, v. 100, iss. 1–2, pp. 85–96. DOI: 10.1016/S0022-1139(99)00205-5

[322] Jackson Jr.W.J., Kuhfuss H.F. Liquid crystal polymers. I. Preparation and properties of p-hydroxybenzoic acid copolyesters // J. of Polymer Science Part A: Polymer Chemistry, 1996, v. 34, iss. 15, pp. 3031–3046. DOI: 10.1002/pola.1996.863

[323] Du X. H., Zhao C. S., Wang Y. Z., Zhou Q., Deng Y., Qu M. H., Yang B. Thermal oxidative degradation behaviours of flame-retardant thermotropic liquid crystal copolyester/PET blends // Materials Chemistry and Physics, 2006, v. 98, iss. 1, pp. 172–177.

DOI: 10.1016/j.matchemphys.2005.09.013

[324] Deng Y., Zhao C.S., Wang Y.Z. Effects of phosphorus-containing thermotropic liquid crystal copolyester on pyrolysis of PET and its flame retardant mechanism // Polymer Degradation and Stability, 2008, v. 93, iss. 11, pp. 2066–2070. DOI: 10.1016/j.polymdegradstab.2008.02.022

[325] Okamoto M., Ichikawa Y., Inoue T., Yamanaka T. Flame-retardant liquid crystal polyester composition, process for preparation thereof and injection-molded article composed thereof. U.S. Patent, no. 5,085,807, 1992.

[326] Yabuhara T., Tada Y., Kameshima T., Nakano S., Nishioka Y., Takase H. Flame-retardent resin compositions compring thermoplastic resin, thermotropic liquid crystal polymer, and hoalogen-free phosphazen compound. U.S. Patent, no. 6,518,336, 2003.

[327] Jing J., Zhang Y., Fang Z.P., Wang D.Y. Core-shell flame retardant/graphene oxide hybrid: a self-assembly strategy towards reducing fire hazard and improving toughness of polylactic acid // Composites Science and Technology, 2018, v. 165, pp. 161–167.

DOI: 10.1016/j.compscitech.2018.06.024

[328] Wang X., Zhou S., Xing W., Yu B., Feng X., Song L., Hu Y. Self-assembly of Ni–Fe layered double hydroxide/graphene hybrids for reducing fire hazard in epoxy composites // J. of Materials Chemistry A, 2013, v. 1, iss. 13, pp. 4383–4390. DOI: 10.1039/C3TA00035D

[329] Zhou K., Gao R., Qian X. Self-assembly of exfoliated molybdenum disulfide (MoS2) nanosheets and layered double hydroxide (LDH): towards reducing fire hazards of epoxy // J. of Hazardous Materials, 2017, v. 338, pp. 343–355. DOI: 10.1016/j.jhazmat.2017.05.046

[330] Wang W., Wang X., Pan Y., Liew K. M., Mohamed O. A., Song L., Hu Y. Synthesis of phosphorylated graphene oxide based multilayer coating: Self-assembly method and application for improving the fire safety of cotton fabrics // Industrial & Engineering Chemistry Research, 2017, v. 56, iss. 23, pp. 6664–6670. DOI: 10.1021/acs.iecr.7b01293

[331] Shang S., Ma X., Yuan B., Chen G., Sun Y., Huang C., Chen X. Modification of halloysite nanotubes with supramolecular self-assembly aggregates for reducing smoke release and fire hazard of polypropylene // Composites Part B: Engineering, 2019, v. 177, p. 107371. DOI: 10.1016/j.compositesb.2019.107371

[332] Wang W., Kan Y., Liu J., Liew K. M., Liu L., Hu Y. Self-assembly of zinc hydroxystannate on amorphous hydrous TiO2 solid sphere for enhancing fire safety of epoxy resin // J. of Hazardous Materials, 2017, v. 340, pp. 263–271.

[333] Zhao S., Yin L., Zhou Q., Liu C., Zhou K. In situ self-assembly of zeolitic imidazolate frameworks on the surface of flexible polyurethane foam: towards for highly efficient oil spill cleanup and fire safety // Applied Surface Science, 2020, v. 506, p. 144700.

DOI: 10.1016/j.apsusc.2019.144700

[334] Huang C., Fang G., Tao Y., Meng X., Lin Y., Bhagia S., Ragauskas A. J. Nacre-inspired hemicelluloses paper with fire retardant and gas barrier properties by self-assembly with bentonite nanosheets // Carbohydrate Polymers, 2019, v. 225, p. 115219.

DOI: 10.1016/j.carbpol.2019.115219

[335] Xie H., Lai X., Wang Y., Li H., Zeng X. A green approach to fabricating nacre-inspired nanocoating for super-efficiently fire-safe polymers via one-step self-assembly // J. of Hazardous Materials, 2019, v. 365, pp. 125–136. DOI: 10.1016/j.jhazmat.2018.10.099

[336] Aseeva R., Serkov B., Sivenkov A. The Change in Fire Behavior of Different Timber Species After Accelerated Artificial Aging // Fire Behavior and Fire Protection in Timber Buildings. Springer, Dordrecht, 2014, pp. 259–279.

[337] Воронова М.И., Суров О.В., Рублева Н.В., Кочкина Н.Е., Прусова С.М., Гисматулина Ю.А., Будаева В.В., Захаров А.Г Свойства нанокристаллической целлюлозы, полученной из целлюлоз однолетних растений // Жидкие кристаллы и их практическое использование, 2017. Т. 17. № 4. С. 97–105.

Сведения об авторе

Градов Олег Валерьевич — ст. науч. сотр., ФГБУН Федеральный исследовательский центр химической физики им. Н.Н. Семенова РАН (ФИЦ ХФ РАН), o.v.gradov@gmail.com

EVOLUTIONARY NONLINEAR CHEMISTRY OF SELF-ORGANIZING MESOPHASE (LIQUID CRYSTAL) STRUCTURES OF WOOD: FROM MORPHOGENESIS TO REGULATION OF CARBON FORMATION (REVIEW)

O.V. Gradov

N.N. Semenov Federal Research Center for Chemical Physics (FRC CP) of the Russian Academy of Sciences, CHEMBIO Department, 4, Kosygina st. 119991, Moscow, Russia

o.v.gradov@gmail.com

This work reconstructs the transformation stages of the mesophase (liquid crystal) wood components from their native state to the processes of coke and coal formation. The phytochemical precursors of mesophases (from lignin and polysaccharides, such as cellulose, to lipids) differing in their cell localization are considered separately. Several criteria are listed by which the similarity between the processes of mesophase formation based on the plant raw materials during carbon formation and self-organization in such systems (including the processes proceeding under the thermal pumping) is observed. The role of membrane and membrane-mimetic interfaces in regulation of the above processes is indicated. The applicability of biogeochemical redox criteria (anaerobic, subaerial, aerobic modes) in the analysis of mesophase diagenesis is considered. It is postulated that, due to the specific regulation/feedback, the above factors can lead to the spatial heterogeneity during coal formation, «autocatalytic» effects and the emergence of redox oscillations, accompanied by the localized changes in the properties of mesophases - from those supporting combustion to practically fire retardant. Based on the dependence of the main properties of the corresponding products on the processes of their production and / or formation, as well as their (geo) chemical environment (which is characteristic of supramolecular and colloidal chemistry), it is possible to formulate supramolecular and colloidal chemical approaches to the interpretation of a number of phenomena and mechanisms of the biogenic fossil mesophase formation, which requires consideration in a separate review paper.

Keywords: mesophase (liquid crystal) wood components; coke formation; coke formation; phytochemical precursors of mesophases; self-organization; membrane-mimetic interfaces; biogenic mesophase structure; geochemical role of mesophases

Suggested citation: Gradov O.V. Evolyutsionnaya nelineynaya khimiya samoorganizuyushchikhsya mezofaznykh (zhidkokristallicheskikh) struktur drevesiny: ot morfogeneza do regulyatsii ugleobrazovaniya (obzor) [Evolutionary nonlinear chemistry of self-organizing mesophase (liquid crystal) structures of wood: from morphogenesis to regulation of carbon formation (review)]. Lesnoy vestnik / Forestry Bulletin, 2023, vol. 27, no. 3, pp. 91–127. DOI: 10.18698/2542-1468-2023-3-91-127

References

[1] White J.L. Role of carbonaceous mesophase in determining morphologies of coke and graphite. American Ceramic Society Bulletin, 1970, v. 49, iss. 4, p. 488.

[2] White J.L. Mesophase mechanisms in the formation of the microstructure of petroleum coke. ACS Symposium Series, 1976, v. 21, pp. 282–314. DOI: 10.1021/bk-1976-0021.ch021

[3] Lebedev A.Yu., Sobkalov A.V., Ivakhnyuk G.K. Sklonnost’ goryuchikh materialov k samovozgoraniyu. Ekologo-kriminalisticheskiy aspekt [The tendency of combustible materials to ignite spontaneously. Ecological and forensic aspect]. Pozharovzryvobezopasnost’ [Fire and explosion safety], 2011, v. 20, no. 10, pp. 11–18.

[4] Krüger G.J. Diffusion in thermotropic liquid crystals. Physics Reports, 1982, v. 82, iss. 4, pp. 229–269. DOI: 10.1016/0370-1573(82)90025-4

[5] Ide Y., Ophir Z. Orientation development in thermotropic liquid crystal polymers. Polymer Engineering & Science, 1983, v. 23, iss. 5, pp. 261–265. DOI: 10.1002/pen.760230505

[6] Langer S.A., Glotzer S.C. Morphogenesis in nematic liquid crystal/polymer materials. Physica A: Statistical Mechanics and its Applications, 1997, v. 239, iss. 1-3, pp. 358–362. DOI: 10.1016/S0378-4371(97)00030-7

[7] Gim M.J., Beller D.A., Yoon D.K. Morphogenesis of liquid crystal topological defects during the nematic-smectic A phase transition. Nature Communications, 2017, v. 8, iss. 1, pp. 1–9. DOI: 10.1038/ncomms15453

[8] Blackman L.D., Doncom K.E., Gibson M.I., O’Reilly R.K. Comparison of photo-and thermally initiated polymerization-induced self-assembly: a lack of end group fidelity drives the formation of higher order morphologies. Polymer Chemistry, 2017, v. 8, iss. 18, pp. 2860–2871. DOI: 10.1039/C7PY00407A

[9] Rosenhauer R., Fischer T., Stumpe J. Light-induced anisotropy of stilbene containing LC polymers and its thermal development by self-organization. Proc. SPIE, 2004, v. 5213, pp. 169–182. DOI: 10.1117/12.506809

[10] Lee H.K., Kanazawa A., Shiono T., Ikeda T., Fujisawa T., Aizawa M., Lee B. Reversible optical control of transmittance in polymer/liquid crystal composite films by photoinduced phase transition. J. of Applied Physics, 1999, v. 86, iss. 11, pp. 5927–5934. DOI: 10.1063/1.371717

[11] Gvozdovskyy I., Yaroshchuk O., Serbina M., Yamaguchi R. Photoinduced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring. Optics express, 2012, v. 20, iss. 4, pp. 3499–3508. DOI: 10.1364/OE.20.003499

[12] Grint A., Marsh H. Carbonization of coal blends: mesophase formation and coke properties. Fuel, 1981, v. 60, iss. 12, pp. 1115–1120. DOI: 10.1016/0016-2361(81)90063-6

[13] Kapustin S.M., Stolonogov I.I., Syunyaev Z.I., Zaitseva N.P. Coalescence of particles of liquid crystal phase in coking residual petroleum stocks. Chemistry and Technology of Fuels and Oils, 1983, v. 19, iss. 4. DOI: 10.1007/BF00731007

[14] Cheng S.X., Chung T.S. Phase separation and coalescence, annihilation of liquid crystal textures during polymerization of main-chain liquid crystalline polyesters. The J. of Physical Chemistry B, 1999, v. 103, iss. 23, pp. 4923–4932. DOI: 10.1021/jp984332q

[15] El Horr N., Bourgerette C., Oberlin A. Mesophase powders (carbonization and graphitization). Carbon, 1994, v. 32, iss. 6, pp. 1035–1044. DOI: 10.1016/0008-6223(94)90212-7

[16] Smith G.W., White J.L., Buechler M. Mesophase/isotropic phase interfacial energy: Determination from coalescence kinetics of mesophase pitch. Carbon, 1985, v. 23, iss. 1, pp. 117–121. DOI: 10.1007/BF00731007

[17] Marsh H. A Review of the Growth and Coalescence of Mesophase (Nematic Liquid Crystals) to Form Anisotropic Carbon, and Its Relevance to Coking and Graphitization. Proceedings of the 4th Int. Conf. on Carbon and Graphite, London, 1974, pp. 2–38.

[18] Moriyama R., Hayashi J.I., Suzuki K., Hiroshima T., Chiba T. Analysis and modeling of mesophase sphere generation, growth and coalescence upon heating of a coal tar pitch. Carbon, 2002, v. 40, iss. 1, pp. 53–64. DOI: 10.1016/S0008-6223(01)00070-7

[19] Chen L., Fei Y., Fan X., Jiang Z. Coalescence of mesophase spheres and microstructure of graphitic carbon revealed by scanning electron microscopy. J. of Materials Science, 2017, v. 52, iss. 21, pp. 12663–12676. DOI: 10.1007/s10853-017-1364-3

[20] Zheng W.J. The effect of mechanical rubbing on the surface free energy of poly (vinyl) alcohol thin films and the contact angle of a liquid crystal on the rubbed polymer surfaces. Molecular Crystals and Liquid Crystals, 2007, v. 479, iss. 1, pp. 1041–1049. DOI: 10.1080/15421400701758816

[21] Marshall K.L., Didovets O., Saulnier D. Contact-angle measurements as a means of probing the surface alignment characteristics of liquid crystal materials on photoalignment layers. Proc. SPIE, 2014, v. 9182, pp. 91820J-2–91820J-1. DOI: 10.1117/12.2062074

[22] Forrest M., Harry M. Growth and coalescence of mesophase in pitches with carbon black additives and in coal. Fuel, 1983, v. 62, iss. 5, pp. 612–615. DOI: 10.1016/0016-2361(83)90237-5

[23] Torii T. Effect of magnetic field on the coalescence and growth of carbonaceous mesophase spherules. Current Advances in Materials and Processes, 2000, v. 13, iss. 4, pp. 919–919.

[24] Choi Y.J., Kim J.H., Lee S.E., Lee Y.S., Lim J.S. Investigation of the coalescence phase between mesophase spheres during mesophase formation. Research Papers of the Korean Institute of Industrial Chemistry, 2019, v. 2019, iss. 1, pp. 437–437.

[25] Hales T.C. The sphere packing problem. J. of Computational and Applied Mathematics, 1992, v. 44, iss. 1, pp. 41–76. DOI: 10.1016/0377-0427(92)90052-Y

[26] Valembois A., Fossorier M.P. C. Sphere-packing bounds revisited for moderate block lengths. IEEE Transactions on Information Theory, 2004, v. 50, iss. 12, pp. 2998–3014. DOI: 10.1109/TIT.2004.838090

[27] Weishauptova Z., Medek J., Vaverkova Z. Study of the porosity of mesophase and its carbonization products. Carbon, 1994, v. 32, iss. 2, pp. 311–321. DOI: 10.1016/0008-6223(94)90194-5

[28] Carroll M.M., Kim K.T., Nesterenko V.F. The effect of temperature on viscoplastic pore collapse. J. of Applied Physics, 1986, v. 59, iss. 6, pp. 1962–1967. DOI: 10.1063/1.336426

[29] Duan Z.P., Wen L.J., Liu Y., Ou Z. C., Huang F.L., Zhang Z.Y. A pore collapse model for hot-spot ignition in shocked multi-component explosives. International J. of Nonlinear Sciences and Numerical Simulation, 2010, v. 11, pp. 19–24. DOI: 10.1515/IJNSNS.2010.11.S1.19

[30] Kumar S., Srivastava M. Influence of presence/addition of asphaltenes on semi-coke textures and mesophase development in petroleum feed stocks. Fuel, 2016, v. 173, pp. 69–78. DOI: 10.1016/j.fuel.2016.01.026

[31] Mehta S., Mitchell G.D., Karpinski J.M. Development of the mesophase and coke-carbon forms during coal carbonization. Biennial Conf. on Carbon. Philadelphia, USA, 1981, pp. 198–199.

[32] Friel J.J. Role of the mesophase during the coal to coke transformation. Proceedings of the 39th Ironmaking Conference. Washington, USA, 1980, v. 39, iss. 23, pp. 274–278.

[33] Moreland A., Patrick J., Walker A. The role of mesophase formation during carbonization in determining coke strength. Coal Science and Technology, 1987, v. 11, pp. 729–732.

[34] Buechler M., Ng C.B., White J.L. Needlelike coke prepared by deformation of carbonaceous mesophase. Biennial Conf. on Carbon. University Park PA, USA, 1980, pp. 433–434.

[35] Ebert L.B., Kastrup R.V., Scanlon J.C. The disruption of aromatic stacking order in mesophase petroleum coke via reductive alkylation. Materials Research Bulletin, 1988, v. 23, iss. 12, pp. 1757–1763. DOI: 10.1016/0025-5408(88)90186-9

[36] Liberman M.A. Introduction to physics and chemistry of combustion: explosion, flame, detonation. Berlin-Heidelberg, Springer, 2008, p. 349. DOI: 10.1007/978-3-540-78759-4

[37] Azatyan V.V. Scientific foundations and effective chemical methods of combustion, explosion, and gas detonation control. Russian J. of Physical Chemistry A, 2011, v. 85, iss. 8, pp. 1293–1306. DOI: 10.1134/S0036024411080036

[38] Goh M., Matsushit S., Akagi K. From helical polyacetylene to helical graphite: synthesis in the chiral nematic liquid crystal field and morphology-retaining carbonisation. Chemical Society Reviews, 2010, v. 39, iss. 7, pp. 2466–2476. DOI: 10.1039/b907990b

[39] Sanada Y. Furuta T., Kimura H., Honda H. Formation of anisotropic mesophase from various carbonaceous materials in early stages of carbonization. Fuel, 1973, v. 52, iss. 2, pp. 143–148. DOI: 10.1016/0016-2361(73)90039-2

[40] Fanjul F., Granda M., Santamarı́a R., Menéndez R. On the chemistry of the oxidative stabilization and carbonization of carbonaceous mesophase. Fuel, 2002, v. 81, iss. 16, pp. 2061–2070. DOI: 10.1016/S0016-2361(02)00189-8

[41] Marsh H. Carbonization and liquid-crystal (mesophase) development: Part 1. The significance of the mesophase during carbonization of coking coals. Fuel, 1973, v. 52, iss. 3, pp. 205–212. DOI: 10.1016/0016-2361(73)90080-X

[42] Marsh H., Foster J. M., Hermon G., Iley M. Carbonization and liquid-crystal (mesophase) development. Part 2. Co-carbonization of aromatic and organic dye compounds, and influence of inerts. Fuel, 1973, v. 52, iss. 4, pp. 234–242. DOI: 10.1016/0016-2361(73)90051-3

[43] Marsh H., Foster J.M., Hermon G., Iley M., Melvin J.N. Carbonization and liquid-crystal (mesophase) development. Part 3. Co-carbonization of aromatic and heterocyclic compounds containing oxygen, nitrogen and sulphur. Fuel, 1973, v. 52, iss. 4, pp. 243–252. DOI: 10.1016/0016-2361(73)90052-5

[44] Dingemans T., Knijnenberg A., Iqbal M., Weiser E., Stclair T. All-aromatic liquid crystal thermosets: New high-performance materials for structural applications. Liquid Crystals Today, 2006, v. 15, iss. 4, pp. 19–24. DOI: 10.1080/14645180701470371

[45] Iqbal M., Dingemans T.J. Synthesis, characterization and properties of branched all-aromatic liquid crystal thermosets. High Performance Polymers, 2010, v. 22, iss. 8, pp. 891–904. DOI: 10.1177/0954008310376677

[46] Iqbal M., Dingemans T.J. High-performance composites based on all-aromatic liquid crystal thermosets. Composites Science and Technology, 2011, v. 71, iss. 6, pp. 863–867. DOI: 10.1016/j.compscitech.2011.01.030

[47] Marsh H., Dachille F., Iley M., Walker P.L., Whang P.W. Carbonization and liquid-crystal (mesophase) development. Part 4. Carbonization of coal-tar pitches and coals of increasing rank. Fuel, 1973, v. 52, iss. 4, pp. 253–261. DOI: 10.1016/0016-2361(73)90053-7

[48] Goodarzi F., Hermon G., Iley M., Marsh H. Carbonization and liquid-crystal (mesophase) development. 6. Effect of pre-oxidation of vitrinites upon coking properties. Fuel, 1975, v. 54, iss. 2, pp. 105–112. DOI: 10.1016/0016-2361(75)90065-4

[49] Reis D., Vian B., Chanzy H., Roland J. C. Liquid crystal-type assembly of native cellulose-glucuronoxylans extracted from plant cell wall. Biology of the Cell, 1991, v. 73, iss. 2–3, pp. 173–178. DOI: 10.1016/0248-4900(91)90100-2

[50] Roland J. C., Reis D., Vian B. Liquid crystal order and turbulence in the planar twist of the growing plant cell walls. Tissue and Cell, 1992, v. 24, iss. 3, pp. 335–345. DOI: 10.1016/0040-8166(92)90050-H

[51] Marsh H., Hermon G., Cornford C. Carbonization and liquid-crystal (mesophase) development. 5. Importance of eutectic zones formed from nematic liquid crystals. Fuel, 1974, v. 53, iss. 3, pp. 168–171. DOI: 10.1016/0016-2361(74)90004-0

[52] Mochida I., Marsh H. Carbonization and liquid-crystal (mesophase) development. 7. Optical textures of cokes from acenaphthylene and decacyclene. Fuel, 1979, v. 58, iss. 9, pp. 626–632. DOI: 10.1016/0016-2361(79)90215-1

[53] Mochida I., Marsh H., Grint A. Carbonization and liquid-crystal (mesophase) development. 8. The co-carbonization of coals with acenaphthylene and decacyclene. Fuel, 1979, v. 58, iss. 9, pp. 633–641. DOI: 10.1016/0016-2361(79)90216-3

[54] Grint A., Swietlik U., Marsh H. Carbonization and liquid-crystal (mesophase) development. 9. The co-carbonization of vitrains with Ashland A200 petroleum pitch. Fuel, 1979, v. 58, iss. 9, pp. 642–650. DOI: 10.1016/0016-2361(79)90217-5

[55] Mochida I., Marsh H. Carbonization and liquid-crystal (mesophase) development. 10. The co-carbonization of coals with solvent-refined coals and coal extracts. Fuel, 1979, v. 58, iss. 11, pp. 790–796. DOI: 10.1016/0016-2361(79)90184-4

[56] Mochida I., Marsh H. Carbonization and liquid-crystal (mesophase) development. 11. The co-carbonization of low-rank coals with modified petroleum pitches. Fuel, 1979, v. 58, iss. 11, pp. 797–802. DOI: 10.1016/0016-2361(79)90185-6

[57] Mochida I., Marsh H., Grint A. Carbonization and liquid-crystal (mesophase) development. 12. Mechanisms of the co-carbonization of coals with organic additives. Fuel, 1979, v. 58, iss. 11, pp. 803–808. DOI: 10.1016/0016-2361(79)90186-8

[58] Mochida I., Marsh H. Carbonization and liquid-crystal (mesophase) development. 13. Kinetic considerations of the co-carbonizations of coals with organic additives. Fuel, 1979, v. 58, iss. 11, pp. 809–814. DOI: 10.1016/0016-2361(79)90187-X

[59] Guymon C.A., Bowman C.N. Kinetic analysis of polymerization rate acceleration during the formation of polymer/smectic liquid crystal composites. Macromolecules, 1997, v. 30, iss. 18, pp. 5271–5278. DOI: 10.1021/ma9703970

[60] Jeong H.K., Kikuchi H., Kajiyama T. Kinetic control of the phase-separated structure and electro-optical switching properties of (polymer/liquid crystal) composite films prepared by a solvent cast method. New Polymeric Materials, 1998, v. 5, iss. 2, pp. 103–117.

[61] Wysocki J.J., Adams J.E., Olechna D.J. Kinetic Study of the Electric Field-Induced Cholestericnematic Transition in Liquid Crystal Films: 1. Relaxation to the Cholesteric State. Liquid Crystals and Ordered Fluids. Springer, Boston, MA, 1970, pp. 419–445. DOI: 10.1007/978-1-4684-8214-0

[62] Wysocki J.J. Continued Kinetic Study of the Cholesteric-Nematic Transition in a Liquid Crystal Film. Molecular Crystals and Liquid Crystals, 1971, v. 14, iss. 1–2, t. 71–84. DOI: 10.1080/15421407108083558

[63] Calderer M.C., Forest M.G., Wang Q. Kinetic theories and mesoscopic models for solutions of nonhomogeneous liquid crystal polymers. J. of Non-Newtonian Fluid Mechanics, 2004, v. 120, iss. 1–3, pp. 69–78. DOI: 10.1016/j.jnnfm.2004.01.015

[64] Yu H., Ji G., Zhang P. A nonhomogeneous kinetic model of liquid crystal polymers and its thermodynamic closure approximation. Communications in Computational Physics, 2010, v. 7, iss. 2, pp. 383. DOI: 10.4208/cicp.2009.09.202

[65] Yu H., Zhang P. A kinetic hydrodynamic simulation of microstructure of liquid crystal polymers in plane shear flow. J. of Non-Newtonian Fluid Mechanics, 2007, v. 141, iss. 2–3, pp. 116–127. DOI: 10.1016/j.jnnfm.2006.09.005

[66] Honorato-Rios C., Kuhnhold A., Bruckner J.R., Dannert R., Schilling T., Lagerwall J.P. Equilibrium liquid crystal phase diagrams and detection of kinetic arrest in cellulose nanocrystal suspensions. Frontiers in Materials, 2016, v. 3, p. 21. DOI: 10.3389/fmats.2016.00021

[67] Marsh H., Mochida I., Scott E., Sherlock J. Carbonization and liquid-crystal (mesophase) development. 17. Co-carbonization of a solvent-refined coal with petroleum pitches and hydrogenated coal-extract solution. Fuel, 1980, v. 59, iss. 7, pp. 517–519. DOI: 10.1016/0016-2361(80)90181-7

[68] Yokono T., Marsh H., Yokono M. Carbonization and liquidcrystal (mesophase) development. 19. Co-carbonization of oxidized coals with model organic compounds. Fuel, 1981, v. 60, iss. 6, pp. 507–512. DOI: 10.1016/0016-2361(81)90113-7

[69] Grint A., Marsh H. Carbonization and liquid-crystal (mesophase) development. 20. Co-carbonization of a high-volatile caking coal with several petroleum pitches. Fuel, 1981, v. 60, iss. 6, pp. 513–518. DOI: 10.1016/0016-2361(81)90114-9

[70] Ragan S., Marsh H. Carbonization and liquid-crystal (mesophase) development. 22. Micro-strength and optical textures of cokes from coal-pitch co-carbonizations. Fuel, 1981, v. 60, iss. 6, pp. 522–528. DOI: 10.1016/0016-2361(81)90116-2

[71] Marsh H., Neavel R.C. Carbonization and liquid-crystal (mesophase) development. 15. A common stage in mechanisms of coal liquefaction and of coal blends for coke making. Fuel, 1980, v. 59, iss. 7, pp. 511–513. DOI: 10.1016/0016-2361(80)90179-9

[72] Marsh H., Mochida I., Macefield I., Scott E. Carbonization and liquid-crystal (mesophase) development. 16. Carbonizations of soluble and insoluble fractions of coal-extract solution. Fuel, 1980, v. 59, iss. 7, pp. 514–516. DOI: 10.1016/0016-2361(80)90180-5

[73] Marsh H., Gerus-Piasecka I., Grint A. Carbonization and liquid crystal (mesophase) development. 14. Co-carbonization of coals with A240 Ashland petroleum pitch: effects of conditions of carbonization upon optical textures of resultant cokes. Fuel, 1980, v. 59, iss. 5, pp. 343–348. DOI: 10.1016/0016-2361(80)90221-5

[74] Marsh H., Kimber G. M., Rantell T., Scott E. Carbonization and liquid-crystal (mesophase) development. 18. carbonization of coal-extract solutions (non-hydrogenated): influence of digestion conditions upon optical texture of cokes. Fuel, 1980, v. 59, iss. 7, pp. 520–522. DOI: 10.1016/0016-2361(80)90182-9

[75] Grint A., Marsh H. Carbonization and liquid-crystal (mesophase) development. 21. Replacement of low-volatile caking coal by petroleum pitch in coal blends for metallurgical coke. Fuel, 1981, v. 60, iss. 6, pp. 519–521. DOI: 10.1016/0016-2361(81)90115-0

[76] Park Y.D., Korai Y., Mochida I. Preparation of anisotropic mesophase pitch by carbonization under vacuum. J. of Materials Science, 1986, v. 21, iss. 2, pp. 424–428. DOI: 10.1007/BF01145504

[77] Preiss H., Kretzschmar U., Rossberg M., Ulbricht K. The carbonization of halogenated mesophase pitches. Fuel, 1991, v. 70, iss. 9, pp. 1045–1051. DOI: 10.1016/0016-2361(91)90258-C

[78] Yanagisawa K., Suzuki T. Carbonization of oxidized mesophase pitches originating from petroleum and coal tar. Fuel, 1993, v. 72, iss. 1, pp. 25–30. DOI: 10.1016/0016-2361(93)90371-8

[79] Miyake M., Ida T., Yoshida H., Wakisaka S., Nomura M., Hamaguchi M., Nishizawa T. Effects of reductively introduced alkyl groups and hydrogen to mesophase pitch on carbonization properties. Carbon, 1993, v. 31, iss. 5, pp. 705–714. DOI: 10.1016/0008-6223(93)90007-W

[80] Drbohlav J., Stevenson W.T.K. The oxidative stabilization and carbonization of a synthetic mesophase pitch, part I: The oxidative stabilization process. Carbon, 1995, v. 33, iss. 5, pp. 693–711. DOI: 10.1016/0008-6223(95)00011-2

[81] Drbohlav J., Stevenson W.T.K. The oxidative stabilization and carbonization of a synthetic mesophase pitch, part II: The carbonization process. Carbon, 1995, v. 33, iss. 5, pp. 713–731. DOI: 10.1016/0008-6223(95)00012-3

[82] Liedtke V., Hüttinger K.J. Mesophase pitches as matrix precursor of carbon fiber reinforced carbon: III. Mechanical properties of composites after carbonization and graphitization treatment. Carbon, 1996, v. 34, iss. 9, pp. 1081–1086. DOI: 10.1016/0008-6223(96)00057-7

[83] Kanno K., Fernandez J.J., Fortin F., Korai Y., Mochida I. Modifications to carbonization of mesophase pitch by addition of carbon blacks. Carbon, 1997, v. 35, iss. 10–11, pp. 1627–1637. DOI: 10.1016/S0008-6223(97)00123-1

[84] Honda H., Kimura H., Sanada Y., Sugawara S., Furuta T. Optical mesophase texture and X-ray diffraction pattern of the early-stage carbonization of pitches. Carbon, 1970, v. 8, iss. 2, pp. 181–189. DOI: 10.1016/0008-6223(70)90112-0

[85] Oshida K., Bonnamy S. Primary carbonization of an anisotropic ‘mesophase’ pitch compared to conventional isotropic pitch. Carbon, 2002, v. 40, iss. 14, pp. 2699–2711. DOI: 10.1016/S0008-6223(02)00184-7

[86] Mianowski A., Blazewicz S., Robak Z. Analysis of the carbonization and formation of coal tar pitch mesophase under dynamic conditions. Carbon, 2003, v. 41, iss. 12, pp. 2413–2424. DOI: 10.1016/S0008-6223(03)00301-4

[87] Zhang X., Khor S., Gao D., Sum E. Carbonization chemistry of heating carbon composites containing novolac/furfuryl alcohol resins and carbon black or mesophase pitch as additives. Materials Chemistry and Physics, 2012, v. 131, iss. 3, pp. 735–742. DOI: 10.1016/j.matchemphys.2011.10.044

[88] Zhang B., Song H., Chen X., Yang W., Li Z., Ma Z. Transformation of Lewis acid during the carbonization and graphitization of mesophase pitches. J. of Analytical and Applied Pyrolysis, 2013, v. 104, pp. 433–440. DOI: 10.1016/j.jaap.2013.06.001

[89] Cheng Y., Fang C., Su J., Yu R., Li T. Carbonization behavior and mesophase conversion kinetics of coal tar pitch using a low temperature molten salt method. J. of Analytical and Applied Pyrolysis, 2014, v. 109, pp. 90–97. DOI: 10.1016/j.jaap.2014.07.009

[90] Cheng Y., Yang L., Luo T., Fang C., Su J., Hui J. Preparation and characterization of mesophase pitch via co-carbonization of waste polyethylene/petroleum pitch. J. of Materials Science & Technology, 2015, v. 31, iss. 8, pp. 857–863. DOI: 10.1016/j.jmst.2015.07.010

[91] Pan G., Liang W., Liang P., Chen Q. Effect of vacuum-carbonization treatment of soft carbon anodes derived from coal-based mesophase pitch for lithium-ion batteries. Clean Energy, 2019, v. 3, iss. 3, pp. 211–216. DOI: 10.1093/ce/zkz011

[92] Cheng X., Song S. Eutectic effect during mesophase formation in co-carbonization of ethylene tar pitch and polystyrene. International J. of Mining Science and Technology, 2012, v. 22, iss. 2, pp. 183–186. DOI: 10.1016/j.ijmst.2011.08.008

[93] Zubkova V., Prezhdo V. The formation of mesophase composites under influence of the coal-tar pitch during coal carbonization. Composite Interfaces, 2005, v. 12, iss. 6, pp. 523–544. DOI: 10.1163/1568554054915174

[94] Baxter R.W. A study of the vegetative anatomy of the genus Sphenophyllum from American coal balls. Annals of the Missouri Botanical Garden, 1948, v. 35, iss. 3, pp. 209–231.

[95] Brea M., Zucol A.F., Iglesias A. Fossil plant studies from late Early Miocene of the Santa Cruz Formation: paleoecology and paleoclimatology at the passive margin of Patagonia, Argentina. Early Miocene Paleobiology in Patagonia: High-Latitude Paleocommunities of the Santa Cruz Formation. Cambridge, UK: Cambridge University Press, 2012, pp. 104–128. DOI: 10.1017/CBO9780511667381.008

[96] Liu Y.A., Kung C.C. Plant fossils of late Eocene from Wucheng, Honan and their significance in botany and paleoclimatology. Chih Wu Hsueh Pao, 1978, v. 1, pp. 59–65.

[97] Poynter J.G., Farrimond P., Robinson N., Eglinton G. Aeolian-derived higher plant lipids in the marine sedimentary record: links with paleoclimate, paleoclimatology and paleometeorology: modern and past patterns of global atmospheric transport. NATO ASI Series. Series C: Mathematical and Physical Sciences, 1989, v. 282, pp. 435–462. DOI: 10.1007/978-94-009-0995-3

[98] Luzzati V., Husson F. The structure of the liquid-crystalline phases of lipid-water systems. The J. of Cell Biology, 1962, v. 12, iss. 2, pp. 207–219. DOI: 10.1083/jcb.12.2.207

[99] Kirk G.L., Gruner S.M. Lyotropic effects of alkanes and headgroup composition on the Lα-HII lipid liquid crystal phase transition: hydrocarbon packing versus intrinsic curvature. J. de Physique, 1985, v. 46, iss. 5, pp. 761–769. DOI: 10.1051/jphys:01985004605076100

[100] Willison J.H.M., Abeysekera R.M. A liquid crystal containing cellulose in living plant tissue. J. of Polymer Science Part C: Polymer Letters, 1988, v. 26, iss. 2, pp. 71–75. DOI: 10.1002/pol.1988.140260202

[101] Reis D., Vian B., Chanzy H., Roland J.C. Liquid crystal-type assembly of native cellulose-glucuronoxylans extracted from plant cell wall. Biology of the Cell, 1991, v. 73, iss. 2–3. pp. 173–178. DOI: 10.1016/0248-4900(91)90100-2

[102] Roland J.C., Reis D., Vian B. Liquid crystal order and turbulence in the planar twist of the growing plant cell walls. Tissue and Cell, 1992, v. 24, iss. 3, pp. 335–345. DOI: 10.1016/0040-8166(92)90050-h

[103] Godinho M.H., Canejo J.P., Feio G., Terentjev E.M. Self-winding of helices in plant tendrils and cellulose liquid crystal fibers. Soft Matter, 2010, v. 6, iss. 23, pp. 5965–5970. DOI: 10.1039/C0SM00427H

[104] van der Heijden E., Bouman F., Boon J.J. Anatomy of recent and peatified Calluna vulgaris stems: implications for coal maceral formation. International J. of Coal Geology, 1994, v. 25, iss. 1, pp. 1–25. DOI: 10.1016/0166-5162(94)90002-7

[105] Ielpi A. Anatomy of major coal successions: Facies analysis and sequence architecture of a brown coal-bearing valley fill to lacustrine tract (Upper Valdarno Basin, Northern Apennines, Italy). Sedimentary Geology, 2012, v. 265, pp. 163–181. DOI: 10.1016/j.sedgeo.2012.04.006

[106] Mukherjee S.M., Sikorski J., Woods H.J. Micellar structure of native cellulose. Nature, 1951, v. 167, iss. 4255, pp. 821–822. DOI: 10.1038/167821b0

[107] Mukherjee S.M., Woods H.J. X-ray and electron microscope studies of the degradation of cellulose by sulphuric acid. Biochimica et Biophysica Acta, 1953, v. 10, pp. 499–511. DOI: 10.1016/0006-3002(53)90295-9

[108] Marchessault R.H., Morehead F.F., Walter N.M. Liquid crystal systems from fibrillar polysaccharides. Nature, 1959, v. 184, iss. 4686, pp. 632–633. DOI: 10.1038/184632a0

[109] Zarubina A.N., Ivankin A.N. Kuleznev A.S., Kochetkov V.A. Tsellyuloza i nanotsellyuloza. Obzor [Сellulose and nano cellulose. Review]. Lesnoy vestnik / Forestry Bulletin, 2019, vol. 23, no. 5, pp. 116–125. DOI: 10.18698/2542-1468-2019-5-116-125

[110] Spontak R.J., El-Nokaly M.A., Bartolo R.G., Burns J.L. Characterization of Lyotropic Polysaccharide Liquid Crystal Blends. Studies in Polymer Science. Elsevier, 1992, v. 11, pp. 273–298. DOI: 10.1016/B978-0-444-89397-0.50019-1

[111] Loshadkin D.V., Khanchich O.A. Study of phase transitions in liquid crystal systems of polysaccharides and their derivatives. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 2001, v. 367, iss. 1, pp. 597–604. DOI: 10.1080/10587250108028680

[112] Shipovskaya A.B., Timofeev G.N. Liquid-crystal state in the system polysaccharide-mesophasogenic solvent. J. of Engineering Physics and Thermophysics, 2006, v. 79, iss. 1, pp. 143–151. DOI: 10.1007/s10891-006-0078-1

[113] Gibeaut D.M., Carpita N.G. Biosynthesis of plant cell wall polysaccharides. The FASEB J., 1994, v. 8, iss. 12, pp. 904–915. DOI: 10.1096/fasebj.8.12.8088456

[114] Gorshkova T.A., Wyatt S.E., Salnikov V.V., Gibeaut D.M., Ibragimov M.R., Lozovaya V.V., Carpita N.C. Cell-wall polysaccharides of developing flax plants. Plant Physiology, 1996, v. 110, iss. 3, pp. 721–729. DOI: 10.1104/pp.110.3.721

[115] Lerouxel O., Cavalier D.M., Liepman A.H., Keegstra K. Biosynthesis of plant cell wall polysaccharidesa complex process. Current opinion in plant biology, 2006, v. 9, iss. 6, pp. 621–630. DOI: 10.1016/j.pbi.2006.09.009

[116] Gorshkova T.A., Kozlova L.V., Mikshina P.V. Spatial structure of plant cell wall polysaccharides and its functional significance. Biochemistry, 2013, v. 78, iss. 7, pp. 836–853. DOI: 10.1134/S0006297913070146

[117] Keilich G., Bailey P., Liese W. Enzymatic degradation of cellulose, cellulose derivatives and hemicelluloses in relation to the fungal decay of wood. Wood Science and Technology, 1970, v. 4, iss. 4, pp. 273–283. DOI: 10.1007/BF00386403

[118] Haigler C.H., White A.R., Brown R.M., Cooper K.M. Alteration of in vivo cellulose ribbon assembly by carboxymethylcellulose and other cellulose derivatives. J. of Cell Biology, 1982, v. 94, iss. 1, pp. 64–69. DOI: 10.1083/jcb.94.1.64

[119] Coffey D.G., Bell D.A., Henderson A. Cellulose and cellulose derivatives. Food Polysaccharides and their applications. Ed. Stephen A.M. New York, Marcel Dekker, 1995, pp. 123–153. DOI: 10.1201/9781420015164.ch5

[120] Bayer E.A., Shoham Y., Lamed R. The cellulosomean exocellular organelle for degrading plant cell wall polysaccharides. Glycomicrobiology. Kluwer Academic/Plenum Publishers, New York, 2000, pp. 387–439. DOI: 10.1007/0-306-46821-2_14

[121] Fried F., Gilli J., Seurin M., Sixou P. Experimental results in lyotropic liquid-crystal solutions of cellulose derivatives. Abstracts of Papers of the American Chemical Society, v. 186, p. 49.

[122] Yong H., Li-Sheng C.M., Li L.S. Study on lyotropic liquid-crystal of ethyl cyanoethyl cellulose. Acta Chimica Sinica, 1988, v. 46, iss. 4, pp. 367–371.

[123] Novikov D.V., Krasovskii A.N., Mnatsakanov S.S. Domain structure of cellulose triacetate. Physics of the Solid State, 2012, v. 54, iss. 2, pp. 409–413.

[124] Gilbert R.D., Patton P.A. Liquid crystal formation in cellulose and cellulose derivatives. Progress in Polymer Science, 1983, v. 9, iss. 2–3, pp. 115–131. DOI: 10.1016/0079-6700(83)90001-1

[125] Khanchich O.A., Loshadkin D.V. Liquid crystal systems of cellulose and its derivatives. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 2001, v. 365, iss. 1, pp. 313–321. DOI: 10.1080/10587250108025309

[126] Geng Y., Seč D., Almeida P.L., Lavrentovich O.D., Žumer S., Godinho M.H. Liquid crystal necklaces: cholesteric drops threaded by thin cellulose fibres. Soft Matter, 2013, v. 9, iss. 33, pp. 7928–7933. DOI: 10.1039/C3SM50900A

[127] Lan X., Jie X., Peng Y., Bin G. A Study of Cellulose Cholesteric Liquid Crystal Texture from Paper Pulp. J. of East China Jiaotong University, 2011, v. 5, pp. 71–76 https://caod.oriprobe.com/order.htm?id=28907858

[128] Li C., Evans J., Wang N., Guo T., He S. Preparation and liquid crystal phase properties of discotic cellulose nanoparticles. Cellulose, 2019, v. 26, iss. 18, pp. 9543–9552. DOI: 10.1007/s10570-019-02773-7

[129] Si-tong L.I.U., Da-wei Z., Guang-zhe P. Ultrasonic effect on lyotropic chiral nematic liquid crystal of cellulose nanocrystal. Chinese J. of Liquid Crystal & Displays, 2015, v. 30, iss. 2. DOI: 10.3788/YJYXS20153002.0229

[130] Santos M.V., Tercjak A., Gutierrez J., Barud H.S., Napoli M., Nalin M., Ribeiro S.J. Optical sensor platform based on cellulose nanocrystals (CNC)–4′-(hexyloxy)-4-biphenylcarbonitrile (HOBC) bi-phase nematic liquid crystal composite films. Carbohydrate polymers, 2017, v. 168, pp. 346–355. DOI: 10.1016/j.carbpol.2017.03.078

[131] Campbell C.E., Kattner U.R., Liu Z.K. The development of phase-based property data using the CALPHAD method and infrastructure needs. Integrating Materials and Manufacturing Innovation, 2014, v. 3, iss. 1, pp. 158–180. DOI: 10.1186/2193-9772-3-12

[132] Kattner U.R. The CALPHAD method and its role in material and process development. Tecnologia em Metalurgia, Materiais e Mineracao, 2016, v. 13, iss. 1, p. 3. DOI:10.4322/2176-1523.1059

[133] Al-Ghoul M. Generalized hydrodynamics of reaction-diffusion systems and dissipative structures. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2004, v. 362, iss. 1821, pp. 1567–1581. DOI: 10.1098/rsta.2004.1396

[134] Chi G., Xue C. An overview of hydrodynamic studies of mineralization Author links open overlay panel. Geoscience Frontiers, 2011, v. 2, iss. 3, pp. 423–438. DOI: 10.1016/j.gsf.2011.05.001

[135] Rosu C., Manaila-Maximean D., Godinho M.H., Almeida P.L. Thermally stimulated depolarization currents and optical transmissionon liquid crystal/cellulose derivative composite devices. Molecular Crystals and Liquid Crystals, 2003, v. 391, iss. 1, pp. 1–11. DOI: 10.1080/10587250216170

[136] Maximean D.M., Bărar A., Ganea C.P., Almeida P.L., Dănilă O. Impedance spectroscopy and electro-optic switching times of a liquid crystal hydroxypropyl cellulose network composite. Proc. SPIE, 2018, v. 10977, p. 109770P. DOI: 10.1117/12.2326224

[137] McMaster M., Liu F., Christopherson W., Gross R.A., Singer K. Switchable Liquid Crystal Composite Windows Using Bacterial Cellulose (BC) Mat Substrates. ACS Applied Polymer Materials, 2019, v. 1, iss. 4, pp. 636–640. DOI: 10.1021/acsapm.9b00007

[138] Shao Z., Li Y., Wang, W. Study on Synthesis and Properties of Cellulose Triacetate for Liquid Crystal Display. Polymer Materials Science and Engineering, 2007, v. 23, iss. 4, pp. 71–73,77.

[139] Maximean D.M., Rosua C., Almeidab P., Kunduc S. Developments of cellulose based polymer dispersed liquid crystal devices. Proc. ECLC, 2009, p. 015.

[140] Shimamura S., Hisakado Y., Nishikawa N. Glucose compound, cellulose composition, cellulose film, polarizing plate and liquid crystal display device: U.S. Patent, 8497003, 2013.

[141] Vshivkov S.A., Rusinova B.V., Kudrevatyh N.V., Galjas A.G., Alekseeva M.S., Kuznecov D.K. Phase transitions of hydroxypropylcellulose liquid-crystalline solutions in magnetic field. Polymer Science Series A, 2006, v. 48, iss. 10, pp. 1115–1119. DOI: 10.1134/S0965545X06100142

[142] Vshivkov S.A., Rusinova E.V. Phase and Structural Transformations of Liquid Crystal Polymer Systems in Mechanical Field. Polymer Science Series A, 2008, v. 50, iss. 2, pp. 135–141. DOI: 10.1134/S0965545X08020065

[143] Vshivkov S.A., Rusinova E.V. Fazovye i strukturnye prevrashcheniya zhidkokristallicheskikh polimernykh sistem v mekhanicheskom pole [Phase and structural transformations of liquid-crystal polymer systems in a mechanical field]. Vysokomolekulyarnye soedineniya. Seriya A [High-molecular compounds. Series A], 2008, v. 50, no. 2, pp. 237–244.

[144] Vshivkov S.A., Galyas A.G. Fazovye zhidkokristallicheskie perekhody polimernykh sistem v magnitnom pole [Phase liquid-crystal transitions of polymer systems in a magnetic field]. Izvestiya vysshikh uchebnykh zavedeniy. Seriya: Khimiya i khimicheskaya tekhnologiya [News of higher educational institutions. Series: Chemistry and Chemical Technology], 2008, v. 51, no. 5, pp. 78–80.

[145] Ribotta R., Joets A. Defects and interactions with the structures in ehd convection in nematic liquid crystals. Cellular Structures in Instabilities. Springer, Berlin, Heidelberg, 1984, pp. 249–262. DOI: 10.1007/3-540-13879-X

[146] Kleman M., Lavrentovich O.D., Friedel J. Soft Matter Physics. An Introduction. New York, NY: Springer, 2004, pp. 658. DOI: 10.1007/b97416

[147] Horsthemke W., Lefever R. Noise-Induced Transitions: Theory and Applications in Physics, Chemistry, and Biology. Berlin: Springer-Verlag, 2002, p. 322. DOI: 10.1007/3-540-36852-3

[148] Vshivkov S.A., Galyas A.G., Kutsenko L.I., Tyukova I.S., Terziyan T.V., Shepetun A.V. Samoorganizatsiya makromolekul i fazovye zhidkokristallicheskie perekhody v rastvorakh efirov tsellyulozy [Self-organization of macromolecules and phase liquid-crystal transitions in solutions of cellulose ethers]. Vysokomolekulyarnye soedineniya. Seriya A [High-molecular compounds. Series A], 2011, v. 53, no. 1, pp. 3–8.

[149] Vshivkov S.A., Galyas A.G. Mechanism of self-assembly of rigid-chain macromolecules of cellulose ethers in solutions. Polymer Science Series A, 2011, v. 53, iss. 11, pp. 1032–1039.

[150] Gradov O.V., Gradova M.A. Synchronization of photochemical processes and photoinduced self-organization in dispersed semiconductors under optical pumping. Proc. 3rd International Symposium «Molecular Photonics», 24–29 June 2012, Repino, Russia. St. Petersburg, 2012, p. 156. DOI: 10.13140/RG.2.1.3935.9521.

[151] Shibaev V.P., Bobrovsky A.Y. Liquid crystalline polymers: development trends and photocontrollable materials. Russian Chemical Reviews, 2017, v. 86, iss. 11, pp. 1024–1072.

[152] Goto H., Akagi K. Optically active electrochromism of poly (3, 4-ethylenedioxythiophene) synthesized by electrochemical polymerization in lyotropic liquid crystal of hydroxypropyl cellulose/water: active control of optical activity. Chemistry of Materials, 2006, v. 18, iss. 2, pp. 255–262. DOI: 10.1021/cm050755a

[153] Stepanov B.I. Osnovy spektroskopii otritsatel’nykh svetovykh potokov [Fundamentals of spectroscopy of negative light fluxes]. Minsk: Publishing House of the Belarusian State University, 1961, 123 p.

[154] Ivanov-Omskii V.I., Matveev B.A. Negative luminescence and devices based on this phenomenon. Semiconductors, 2007, v. 41, iss. 3, pp. 247–258.

[155] Klabunde K., Sergeev G. Nanochemistry. Amsterdam: Elsevier, 2013, p. 372. DOI: 10.1016/B978-0-444-51956-6.X5000-7

[156] Khoshkava V., Kamal M.R. Effect of drying conditions on cellulose nanocrystal (CNC) agglomerate porosity and dispersibility in polymer nanocomposites. Powder Technology, 2014, v. 261, pp. 288–298. DOI: 10.1016/j.powtec.2014.04.016

[157] Shipovskaja A.B., Timofeeva G.N. Liquid crystalline state in the polysaccharide-mesophazogenic solvent system. Engineering Physics J., 2006, v. 79, iss. 1, pp. 139–147.

[158] Vshivkov S.A., Adamova L.V., Rusinova E.V., Safronov A.P., Dreval’ V.E., Galyas A.G. Termodinamika zhidkokristallicheskikh rastvorov gidroksipropiltsellyulozy v vode i etanole [Thermodynamics of liquid-crystalline solutions of hydroxypropyl cellulose in water and ethanol]. Vysokomolekulyarnye soedineniya. Seriya A [High-molecular compounds. Series A], 2007, v. 49, no. 5,

  1. 867–873.

[159] Vshivkov S.A., Rusinova E.V. Fazovye zhidkokristallicheskie perekhody v deformiruemykh sistemakh gidroksipropiltsellyuloza etanol i gidroksipropiltsellyuloza uksusnaya kislota [Phase liquid crystal transitions in deformable systems hydroxypropyl cellulose ethanol and hydroxypropyl cellulose acetic acid]. Vysokomolekulyarnye soedineniya. Seriya B [High Molecular Compounds. Series B], 2007, v. 49, no. 9, pp. 1741–1744

[160] Kondrashina O.V., Artyukhov V.G., Slivkin A.I. Nekotorye fiziko-khimicheskie svoystva kholestericheskoy zhidkokristallicheskoy dispersii, vliyayushchie na ee sposobnost’ k obrazovaniyu metallorganicheskikh nanochastits [Some physical and chemical properties of cholesteric liquid crystal dispersion affecting its ability to form organometallic nanoparticles]. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Khimiya. Biologiya. Farmatsiya [Bulletin of the Voronezh State University. Series: Chemistry. Biology. Pharmacy], 2012, no. 1, pp. 146–148.

[161] Khanchich O.A., Kuznetsova S.A. Temperaturno-kontsentratsionnye usloviya obrazovaniya zhidkokristallicheskoy fazy v prostykh i slozhnykh efirakh tsellyulozy v triftoruksusnoy kislote [Temperature-concentration conditions for the formation of a liquid-crystalline phase in cellulose ethers and esters in trifluoroacetic acid]. Vysokomolekulyarnye soedineniya. Seriya A [High Molecular Compounds. Series A, 2011], v. 53, no. 4, pp. 547–552.

[162] Vshivkov S.A., Rusinova E.V. Vliyanie prirody komponentov na zhidkokristallicheskie perekhody v rastvorakh efirov tsellyulozy [Influence of the nature of components on liquid-crystal transitions in solutions of cellulose ethers]. Vysokomolekulyarnye soedineniya. Seriya A [High Molecular Compounds. Series A], 2018, v. 60, no. 1, pp. 66–75.

[163] Shipovskaya A.B., Timofeeva G.N. Zhidkokristallicheskoe sostoyanie atsetatov tsellyulozy: ot proshlogo k nastoyashchemu. Opyt saratovskoy shkoly [Liquid-crystal state of cellulose acetates: from the past to the present. The experience of the Saratov school]. Khimicheskie volokna [Chemical fibers], 2006, no. 1, pp. 13–17.

[164] Kulichikhin V.G., Golova L.K. Zhidkokristallicheskoe sostoyanie tsellyulozy i ee proizvodnykh [Liquid crystal state of cellulose and its derivatives]. Khimiya drevesiny [Chemistry of wood], 1985, no. 3, pp. 9–27.

[165] Kalashnik A.T., Papkov S.P., Rudinskaya G.V., Milkova L.P. Liquid crystal state of cellulose. Polymer Science USSR, 1991, v. 33, iss. 1, pp. 107–112. DOI: 10.1016/0032-3950(91)90277-W

[166] Konovalova L.Y., Negodyaeva G.S., Kalashnik A.T., Rudinskaya G.V., Mil’kova L.P., Pozhalkin N.S., Iovleva M. Sorption studies of hydrated cellulose fibre having a liquid-crystal structure. Fibre Chemistry, 1994, v. 26, iss. 3, pp. 170–173. DOI: 10.1007/BF00545628

[167] Krestov G.A., Myasoedova V.V., Alekseeva O.V., Belov S.Yu. Zhidkokristallicheskoe sostoyanie tsellyulozy i ee proizvodnykh v nevodnykh rastvorakh [Liquid-crystal state of cellulose and its derivatives in non-aqueous solutions]. Doklady Akademii nauk SSSR, 1987, v. 293, no. 1, pp. 174–176.

[168] Shipovskaya A.B., Kazmicheva O.F., Timofeeva G.N. Opticheskaya aktivnost’ sistemy atsetat tsellyulozy-mezofazogennyy rastvoritel’ pri, formirovanii liotropnoy zhidkokristallicheskoy fazy [Optical activity of the cellulose acetate-mesophasogenic solvent system during the formation of a lyotropic liquid crystal phase]. Biofizika [Biophysics], 2006, v. 51, no. 2, pp. 256–266.

[169] Grinshpan D.D., Tret’yakova S.M., Tsygankova N.G., Makarevich S.E., Savitskaya T.A. Fazovye ravnovesiya v sistemakh Na-sol’ sul’fata atsetata tsellyulozy-voda-spirt i kriteriy realizatsii zhidkokristallicheskogo sostoyaniya [Phase equilibria in systems Na-salt of cellulose acetate sulfate-water-alcohol and the criterion for the implementation of liquid crystal conditions]. Zhurnal fizicheskoy khimii [Journal of Physical Chemistry], 2005, v. 79, no. 11, pp. 1948–1954.

[170] Shipovskaya A.B., Timofeeva G.N., Gegel’ N.O., Shchegolev S.Yu. Fazovoe razdelenie i zhidkokristallicheskoe sostoyanie triatsetata tsellyulozy v nitrometane [Phase separation and liquid crystal state of cellulose triacetate in nitromethane]. Inzhenerno-fizicheskiy zhurnal [Engineering Physics Journal], 2008, v. 6, pp. 1178–1187.

[171] Sadovoy A.V., Shipovskaya A.B., Nazvanov V.F. Samoorganizatsiya i elektroopticheskie kharakteristiki kompozita nematicheskiy zhidkiy kristall-diatsetat tsellyulozy [Self-organization and electro-optical characteristics of the composite nematic liquid crystal-cellulose diacetate]. Pis’ma v Zhurnal tekhnicheskoy fiziki [Letters to the Journal of Technical Physics], 2008, v. 34, no. 23, pp. 15–20.

[172] Mewis J., Moldenaers P. Rheology of polymeric liquid crystals. Current Opinion in Colloid & Interface Science, 1996, v. 1, iss. 4, pp. 466–471.

[173] Semsarilar M., Tom J., Ladmiral V., Perrier S. Supramolecular hybrids of cellulose and synthetic polymers. Polymer Chemistry, 2012, v. 3, iss. 12, pp. 3266–3275. DOI: 10.1039/C2PY20385E

[174] Lehn J.M. Chemistry: Concepts and Perspectives. Weinheim, Wiley WCH, 1995, pp. 281. DOI: 10.1002/3527607439

[175] Kulichikhin V.G., Makarova V.V., Tolstykh M.Yu., Vasil’ev G.B. Fazovye ravnovesiya v rastvorakh proizvodnykh tsellyulozy i reologicheskie svoystva rastvorov v raznykh fazovykh sostoyaniyakh [Phase equilibria in solutions of cellulose derivatives and rheological properties of solutions in different phase states]. Vysokomolekulyarnye soedineniya. Seriya A [High Molecular Compounds. Series A], 2010, v. 52, no. 11, pp. 2001–2013.

[176] Kulichikhin V.G., Makarova V.V., Tolstykh M.Yu., Picken S.J., Mendes E. Evolyutsiya struktury pri techenii zhidkokristallicheskikh rastvorov gidroksipropiltsellyulozy i nanokompozitov na ikh osnove [Structural evolution during the flow of liquid-crystalline solutions of hydroxypropylcellulose and nanocomposites based on them]. Vysokomolekulyarnye soedineniya. Seriya A [High-molecular compounds. Series A], 2011, v. 53, no. 9, pp. 1494–1512.

[177] Alekseeva O.V., Myasoedova V.V., Krestov G.A. Reologicheskie svoystva sistemy tsellyuloza-triftoruksusnaya kislota-khloroform v zhidkokristallicheskom sostoyanii [Rheological properties of the cellulose-trifluoroacetic acid-chloroform system in the liquid crystal state]. Zhurnal fizicheskoy khimii [Journal of Physical Chemistry], 1986, v. 60, no. 10, pp. 2441–2445.

[178] Laszkiewicz B. Liquid crystal phenomena in cellulose-NMMO-H2O system. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 2000, v. 353, iss. 1, pp. 127–131. DOI: 10.1080/10587250008025653

[179] Araki J., Kuga S. Effect of trace electrolyte on liquid crystal type of cellulose microcrystals. Langmuir, 2001, v. 17, iss. 15, pp. 4493–4496. DOI: 10.1021/la0102455

[180] Schroeder M. Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise. New York: W.H. Freeman, 1992, 429 p

[181] Mitchell G.R., Guo W., Davis F.J. Liquid crystal elastomers based upon cellulose derivatives. Polymer, 1992, v. 33, iss. 1, pp. 68–74. DOI: 10.1016/0032-3861(92)90561-A

[182] Bae J.W., Sohn E. H., Kang H. Liquid Crystal Alignment Behavior on Rubbed Films of Cellulose Acetate. Molecular Crystals and Liquid Crystals, 2016, v. 626, iss. 1, pp. 215–221. DOI: 10.1080/15421406.2015.1106886

[183] Lavrentovich O.D. Prepatterned liquid crystal elastomers as a step toward artificial morphogenesis. Proceedings of the National Academy of Sciences, 2018, v. 115, iss. 28, pp. 7171–7173. DOI: 10.1073/pnas.1809083115

[184] Suto S., Ito R., Karasawa M. Die swell of lyotropic liquid crystal: hydroxypropyl cellulose/water system. Polymer communications (Guildford), 1985, v. 26, iss. 11, pp. 335–336. DOI: 10.1002/app.1989.070370312

[185] Suto S., Yoshida S. Die swell of liquid crystal-forming solutions of hydroxypropyl cellulose through a long capillary die. Die Angewandte Makromolekulare Chemie: Applied Macromolecular Chemistry and Physics, 1995, v. 226, iss. 1, pp. 89–99. DOI: 10.1002/apmc.1995.052260109

[186] Geng Y., Almeida P.L., Feio G.M., Figueirinhas J.L., Godinho M.H. Water-based cellulose liquid crystal system investigated by rheo-NMR. Macromolecules, 2013, v. 46, iss. 11, pp. 4296–4302. DOI: 10.1021/ma400601b

[187] Echeverria C., Almeida P.L., Feio G., Figueirinhas J.L., Rey A.D., Godinho M.H. Rheo-NMR study of water-based cellulose liquid crystal system at high shear rates. Polymer, 2015, v. 65, pp. 18–25. DOI: 10.1016/j.polymer.2015.03.050

[188] Dong R.Y. NMR of cellulose nanocrystals, mesoporous media, and liquid crystal assemblies. Liquid Crystals, 2020, v. 47, iss. 13, pp. 1911–1925. DOI: 10.1080/02678292.2019.1613686

[189] Rauch E.M., Millonas M.M. The role of trans-membrane signal transduction in Turing-type cellular pattern formation. J. of theoretical biology, 2004, v. 226, iss. 4, pp. 401–407. DOI: 10.1016/j.jtbi.2003.09.018

[190] Fendler J.H. (ed.). Membrane-mimetic approach to advanced materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. DOI: 10.1007/BFb0020989

[191] Tu M., Han W., Zeng R., Best S.M., Cameron R.E. A study of surface morphology and phase separation of polymer/cellulose liquid crystal composite membranes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, v. 407, pp. 126–132. DOI: 10.1016/j.colsurfa.2012.05.019

[192] Han W., Tu M., Zeng R., Zhao J., Zhou C. Preparation, characterization and cytocompatibility of polyurethane/cellulose based liquid crystal composite membranes. Carbohydrate polymers, 2012, v. 90, iss. 3, pp. 1353–1361. DOI: 10.1016/j.carbpol.2012.07.004

[193] Hong Y.K., Cho B.H. Membrane from Liquid Crystal Composite of Cellulose Acetate and Poly (4-vinyl pyridine). Textile Coloration and Finishing, 1991, v. 3, iss. 2, pp. 43–48.

[194] Chen L., Li X.G., Wang N.C. Structure and oxygen permselectivity of ethyl cellulose/liquid crystal composite membranes. Polymeric Materials Science & Engineering, (Chinese), 1993, v. 9, pp. 103.

[195] Dinarvand R., Khodaverdi E., Atyabi F., Erfan M. Thermoresponsive drug delivery using liquid crystal-embedded cellulose nitrate membranes. Drug Delivery, 2006, v. 13, iss. 5, pp. 345–350. DOI: 10.1080/10717540500394729

[196] Atyabi F., Khodaverdi E., Dinarvand R. Temperature modulated drug permeation through liquid crystal embedded cellulose membranes. International J. of Pharmaceutics, 2007, v. 339, iss. 1–2, pp. 213–221. DOI: 10.1016/j.ijpharm.2007.03.004

[197] Sakaguchi H., Iida T., Saito S., Fukui Y. Color responses of cholesteric liquid-crystal ethyl cellulose composite membranes exposed to fatty-acids and amines. Chemical Senses, 1984, v. 9, iss. 1, pp. 82–82.

[198] Prigogine I. From being to becoming: time and complexity in the physical sciences. San Francisco, Freeman and Company, 1981, p. 272.

[199] Zhang Y., Wan X., Mo M., Li D. Preparation of cellulose nanocrystal film and cholesteric liquid crystal pattern. J. of Forestry Engineering, 2017, v. 2, iss. 4, pp. 103–108.

[200] Li X.G., Huang M.R., Hu L., Lin G., Yang P.C. Cellulose derivative and liquid crystal blend membranes for oxygen enrichment. European Polymer J., 1999, v. 35, iss. 1, pp. 157–166. DOI: 10.1016/S0014-3057(98)00088-3

[201] Zhao J.P., Zeng R., Zhao J.H., Tu M., Wu H., Zha Z., Zhang J. Study on the blood anticoagulation of heparin-functionalized hydroxypropyl cellulose liquid crystal. Gongneng Cailiao (J. of Functional Materials), 2014, v. 45, iss. 8, pp. 08092–08096. DOI: 10.3969/j.issn.1001-9731.2014.08.020

[202] Huang Y., Luo X., Ma D. Effect of the Molecular Weight of Polycaprolactone on the Lyotropic Liquid Crystal Textures of Polycaprolactone / Ethyl Cellulose Blends. J. of Functional Polymers, 2001, v. 14, iss. 1, pp. 49–52.

[203] Gong L., Zeng R., Ye J.Y., Tu M., Zhao J.H., Zhou C.R. Synthesis and characterization of hydroxypropyl cellulose propionate (PPC) liquid crystal and protein adsorption of PPC/PVC blend films. Gongneng Cailiao (J. of Functional Materials), 2010, v. 8, pp. 1398–1401.

[204] Eguchi N., Kawabata K., Goto H. Synthesis of electro-optically active polymer composite of poly [2, 2’-bis (3, 4-ethylenedioxythiophene)-alt-fluorene]/hydroxypropyl cellulose showing liquid crystal structure. Express Polymer Letters, 2017, v. 11, iss. 10, pp. 846–851 DOI: 10.3144/expresspolymlett.2017.80

[205] Vshivkov S.A., Rusinova E.V. Liquid crystal phase transitions and rheological properties of cellulose ethers. Russian J. of Applied Chemistry, 2011, v. 84, iss. 10, pp. 1830–1835. DOI: 10.1134/S1070427211100260

[206] Shipovskaya A.B., Timofeeva G.N., Gegel N.O., Shchegolev S.Y. Phase separation and liquid-crystal state of cellulose triacetate in nitromethane. J. of Engineering Physics and Thermophysics, 2008, v. 81, iss. 6, pp. 1222–1231. DOI: 10.1007/s10891-009-0141-9

[207] Yim C.T., Gilson D.F.R., Kondo T., Gray D.G. Order parameters and side-chain conformation in ethyl cellulose/chloroform liquid crystal phases. Macromolecules, 1992, v. 25, iss. 13, pp. 3377–3380. DOI: 10.1021/ma00039a010

[208] Lirova B.I., Lyutikova E.A. Formation of the liquid crystal state of cellulose diacetate in nitromethane vapor: A fourier IR study. Russian J. of Applied Chemistry, 2012, v. 85, iss. 10, pp. 1617–1621. DOI: 10.1134/S1070427212100242

[209] Honorato-Rios C., Kuhnhold A., Bruckner J.R., Dannert R., Schilling T., Lagerwall J.P. Equilibrium liquid crystal phase diagrams and detection of kinetic arrest in cellulose nanocrystal suspensions. Frontiers in Materials, 2016, pp. 21. DOI: 10.3389/fmats.2016.00021

[210] Rosantsev E.G., Khanchich O.A., Loshadkin D.V. Fractal Geometry of Polymeric Liquid-Crystal System Formation in Cellulose Derivatives. Russian Polymer News, 2001, v. 6, pp. 33–37.

[211] Khanchich O.A., Loshadkin D.V. Liquid-Crystal Phase Formation in Concentrated Cellulose Solutions. Russian Polymer News, 2001, v. 6, pp. 8–12.

[212] Liu D., Li J., Sun F., Xiao R., Guo Y., Song J. Liquid crystal microphase separation of cellulose nanocrystals in wet-spun PVA composite fibers. RSC Advances, 2014, v. 4, iss. 58, pp. 30784–30789. DOI: 10.1039/C4RA04063E

[213] Reis D., Vian B., Chanzy H., Roland J.C. Liquid crystal-type assembly of native cellulose-glucuronoxylans extracted from plant cell wall. Biology of the Cell, 1991, v. 73, iss. 2–3, pp. 173–178. DOI: 10.1016/0248-4900(91)90100-2

[214] Sadovoy A.V., Shipovskaya A.B., Nazvanov V.F. Self-organization and electrooptical characteristics of a nematic liquid crystal-cellulose diacetate composite. Technical Physics Letters, 2008, v. 34, iss. 12, pp. 1002–1004. DOI: 10.1134/S1063785008120031

[215] Sadovoy A.V., Shipovskaya A.B. Transmission and small-angle scattering of light by nematic liquid crystal-cellulose diacetate composite with self-organized structure. Technical Physics Letters, 2010, v. 36, iss. 12, pp. 1150–1153. DOI: 10.1134/S1063785010120254

[216] Lagerwall J.P., Schütz C., Salajkova M., Noh J., Hyun Park J., Scalia G., Bergström L. Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Materials, 2014, v. 6, iss. 1, p. 80.

DOI: 10.1038/am.2013.69

[217] Han Y., Bizmark N., Abukhdeir N.M., Ioannidis M.A. Dynamics of ethyl cellulose nanoparticle self-assembly at the interface of a nematic liquid crystal droplet. Physical Chemistry Chemical Physics, 2017, v. 19, iss. 36, pp. 24955–24960. DOI: 10.1039/C7CP04421F

[218] Lochhead R.Y., Welch C.F. Effect of hydrophobically-modified hydroxy ethyl cellulose on the phase morphology and rheology of a model surfactant mesophase system in the liquid crystal regime. Abstracts of Papers of the American Chemical Society, 2001, v. 222, pp. U377

[219] Matsumori M. Takahashi A., Tomioka Y., Hikima T., Takata M., Kajitani T., Fukushima T. Photoalignment of an azobenzene-based chromonic liquid crystal dispersed in triacetyl cellulose: single-layer alignment films with an exceptionally high order parameter. ACS applied materials & interfaces, 2015, v. 7, iss. 21, pp. 11074–11078. DOI: 10.1021/acsami.5b02577

[220] Song W., Liu D., Prempeh N., Song R. Fiber alignment and liquid crystal orientation of cellulose nanocrystals in the electrospun nanofibrous mats. Biomacromolecules, 2017, v. 18, iss. 10, pp. 3273–3279. DOI: 10.1021/acs.biomac.7b00927

[221] Shipovskaya A.B., Gegel N.O., Timofeeva G.N. Orientation processes in cellulose acetate under the action of dimethyl sulfoxide vapor. Russian J. of Applied Chemistry, 2008, v. 81, iss. 6, pp. 1052–1056. DOI: 10.1134/S1070427208060256

[222] Gradov O.V., Gradova M.A. Microwave-Induced Self-Organization of Liophilic Colloids During Enhanced Hydrolytic Polymerization. 2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE). IEEE, 2020, pp. 932–936. DOI:10.1109/EFRE47760.2020.9242115

[223] Praisner T.J., Sabatino D.R., Smith C.R. Simultaneously combined liquid crystal surface heat transfer and PIV flow-field measurements. Experiments in Fluids, 2001, v. 30, iss. 1, pp. 1–10. DOI: 10.1007/s003480000136

[224] Efstratiou M., Christy J., Sefiane K. Crystallization-driven flows within evaporating aqueous saline droplets. Langmuir, 2020, v. 36, iss. 18, pp. 4995–5002. DOI: 10.1021/acs.langmuir.0c00576

[225] Facchine E., Jin S., Spontak R., Rojas O., Khan S., Team S. K. Liquid crystal ordering transition and colloidal interactions of cellulose nanocrystals (CNCs). APS March Meeting Abstracts, 2018, v. 2018. pp. E57.006.

[226] Xu Y., Atrens A., Stokes J.R. A review of nanocrystalline cellulose suspensions: Rheology, liquid crystal ordering and colloidal phase behaviour. Advances in Colloid and Interface Science, 2020, v. 275, p. 102076. DOI: 10.1016/j.cis.2019.102076

[227] Wissler J.H. Bioreactors with laminar and defined gradient hydrodynamics: hydraulic culture of cells for assessment of effectors controlling regenerative tissue morphogenesis in wound healing. Protides of the Biological Fluids. Elsevier, 1985, v. 33, pp. 643–650. DOI: 10.1016/B978-0-08-033215-4.50158-8

[228] Bolkhovitinov A.S. Hydrodynamic Engineering Approaches for Modeling of the Surface Cell Morphogenesis as Applications of Rosen’s Optimality Theory. J. of Medical and Bioengineering, 2013, v. 2, iss. 4, pp. 279–289. DOI: 10.12720/jomb.2.4.279-289

[229] Diewald U., Preusser T., Rumpf M. Anisotropic diffusion in vector field visualization on euclidean domains and surfaces. IEEE Transactions on Visualization and Computer Graphics, 2000, v. 6, iss. 2, pp. 139–149. DOI: 10.1109/2945.856995

[230] Gradov O.V., Orehov T.K. Computer-assisted SPIM-like methods (SPIM, mSPIM, MuViSPIM & PIV/LDV/LDA/LDF based on SPIM-like setups) as novel tools for dynamic analysis of supercritical fluid fluxes and oriented complex fluids with soft matter structures. Computational Nanotechnology, 2018, iss. 4, pp. 17–24.

[231] Filip D., Costa I., Figueirinhas J.L., Godinho M.H. Strain-induced matrix and droplets anisotropic deformation in liquid crystalline cellulose dispersed liquid crystal films. Composite Interfaces, 2006, v. 13, iss. 4–6, pp. 477–486. DOI: 10.1163/156855406777408539

[232] Lista M., Orentas E., Areephong J., Charbonnaz P., Wilson A., Zhao Y., Matile S. Self-organizing surface-initiated polymerization, templated self-sorting and templated stack exchange: synthetic methods to build complex systems. Organic & Biomolecular Chemistry, 2013, v. 11, iss. 11, pp. 1754–1765. DOI: 10.1039/C3OB27303B

[233] Perekrestov V.I., Davydenko T.O. Role of interdependence dissipative and conservative self-organization in obtaining low-dimensional 3D-systems. 22nd International Crimean Conf. «Microwave & Telecommunication Technology», 10–14 Sept. 2012. IEEE, 2012, pp. 667–668.

[234] Giese M., Blusch L.K., Khan M.K., MacLachlan M.J. Functional materials from cellulose-derived liquid-crystal templates. Angewandte Chemie International Edition, 2015, v. 54, iss. 10, pp. 2888–2910. DOI: 10.1002/anie.201407141

[235] Risteen B.E., Blake A., McBride M.A., Rosu C., Park J.O., Srinivasarao M., Reichmanis E. Enhanced alignment of water-soluble polythiophene using cellulose nanocrystals as a liquid crystal template. Biomacromolecules, 2017, v. 18, iss. 5, pp. 1556–1562, DOI: 10.1021/acs.biomac.7b00121

[236] Kashyap S., Saxena S.K., Gupta S.J., Mahajan J. Thermal behavior of nano cellulose doped polymer dispersed liquid crystal (PDLC). AIP Conference Proceedings, 2016, v. 1728, iss. 1, p. 020632. DOI: 10.1063/1.4946683

[237] Ishizaki T., Uenuma S., Furumi S. Thermotropic properties of cholesteric liquid crystal from hydroxypropyl cellulose mixed esters. Kobunshi Ronbunshu, 2015, v. 72, iss. 12, pp. 737–745. DOI: 10.1295/koron.2015-0029

[238] Qin W., Li Z., Li J., Zhang L., Liu R., Liu H. Synthesis and characterization of azobenzene hydroxypropyl cellulose with photochromic and thermotropic liquid crystal properties. Cellulose, 2015, v. 22, iss. 1, pp. 203–214. DOI: 10.1007/s10570-014-0479-9

[239] Huang X., Wang N., Wang W., Zhang H., Mo Z. Studies on the Blends of Thermotropic Liquid Crystal Polymer Ethyl Cellulose and Nylon-1010. Acta Polymerica Sinica, 1995, pp. 709–712.

[240] Ruan W.H., Shen J.W., Li B.Q. Studies on nucleation of cellulose aromatic ester thermotropic liquid crystal on polyethylene terephthalate. Chemical J. of Chinese Universities – Chinese, 1998, v. 19, iss. 3, pp. 469–471.

[241] Roşu C., Mănăilă-Maximean D., Godinho H.M., Almeida L.P. Thermally stimulated depolarization currents and optical transmission measurements on liquid crystal/cellulose derivative composite devices. Mol. Cryst. Liq. Cryst, 2002, v. 391, pp. 1–11.

DOI: 10.1080/10587250216170

[242] Lin S.Y., Chen K.S., Lin Y.Y. Thermo-responsive function of liquid crystal-embedded cellulose nitrate membrane influenced by the pore size of membrane. Pharmaceutical and Pharmacological Letters, 1995, v. 5, iss. 4, pp. 159–161.

[243] Yousefi A., Khodaverdi E., Atyabi F., Dinarvand R. Thermosensitive drug permeation through liquid crystal-embedded cellulose nitrate membranes. PDA J. of Pharmaceutical Science and Technology, 2010, v. 64, iss. 1, pp. 54–62.

[244] Wang F., Han L., Wang H., Ma C., Liu L., Wang J., Li J., Huang Z. Study on preparation and thermal conductivity of liquid crystal epoxy resin filled with nano-cellulose / BNNSs. Proc. 2nd International Conf. on Electrical Materials and Power Equipment (ICEMPE). Guangzhou, China, 2019, pp. 321–324. DOI: 10.1109/ICEMPE.2019.8727321

[245] Dong Y.M., Zhao Y.Q., Zeng E.M., Yang L.L., Ge Q., Hu X.L. A Dendronized Cellulose Derivative and Its Thermotropic Liquid Crystal and Lyotropic Cholesteric Liquid Crystal Behaviors. Advanced Materials Research, 2011, v. 239, pp. 2620–2623.

DOI: 10.4028/www.scientific.net/AMR.239-242.2620

[246] Violi A., Izvekov S., Voth G.A. Carbonaceous nanoparticle self-assembly in combustion. Proc. 4th Joint Meeting of the US Sections of the Combustion Institute. Pittsburg, USA, 2005. URL: https://cutt.us/ECfOD

[247] Saha B., Shindo S., Irle S., Morokuma K. Quantum chemical molecular dynamics simulations of dynamic fullerene self-assembly in benzene combustion. ACS Nano, 2009, v. 3, iss. 8, pp. 2241–2257. DOI: 10.1021/nn900494s

[248] Thiruvengadathan R., Staley C., Geeson J.M., Chung S., Raymond K.E., Gangopadhyay K., Gangopadhyay S. Enhanced Combustion Characteristics of Bismuth Trioxide-Aluminum Nanocomposites Prepared through Graphene Oxide Directed Self-Assembly. Propellants, Explosives, Pyrotechnics, 2015, v. 40, iss. 5, pp. 729–734. DOI: 10.1002/prep.201400238

[249] Malchi J.Y. Combustion and self-assembly of nanoenergetic materials. PhD Thesis. The Pennsylvania State University, 2008.

[250] Francis W. Coal, its formation and composition. New York: St. Martin’s Press, 1954, p. 567.

[251] Linlin D., Wei L., Jun C., Ban L., Shouxin L. Formation, tuning and application of chiral nematic liquid crystal phase based on nanocrystalline cellulose. Progress in Chemistry, 2015, v. 27, iss. 7, pp. 861–869. DOI: 10.7536/PC141239

[252] Rimmer S.M., Yoksoulian L.E., Hower J.C. Anatomy of an intruded coal, I: Effect of contact metamorphism on whole-coal geochemistry, Springfield (No. 5) (Pennsylvanian) coal, Illinois Basin. International J. of Coal Geology, 2009, v. 79, iss. 3, pp. 74–82. DOI: 10.1016/j.coal.2009.06.002

[253] Yoksoulian L.E., Rimmer S.M., Rowe H.D. Anatomy of an intruded coal, II: effect of contact metamorphism on organic δ13C and implications for the release of thermogenic methane, Springfield (No. 5) Coal, Illinois Basin. International J. of Coal Geology, 2016, v. 158, pp. 129–136. DOI: 10.1016/j.coal.2016.03.009

[254] Xiaoming L.I., Daiyong C.A.O., Demin L.I.U. Structure of different types of coal metamorphism by HTEM. Mining Science and Technology (China), 2010, v. 20, iss. 6, pp. 835–838. DOI: 10.1016/S1674-5264(0960291-X

[255] Pan J., Lv M., Bai H., Hou Q., Li M., Wang Z. Effects of metamorphism and deformation on the coal macromolecular structure by laser Raman spectroscopy. Energy & Fuels, 2017, v. 31, iss. 2, pp. 1136–1146. DOI: 10.1021/acs.energyfuels.6b02176

[256] Hower J.C., Davis A. Application of vitrinite reflectance anisotropy in the evaluation of coal metamorphism. Geological Society of America Bulletin, 1981, v. 92, iss. 6, pp. 350–366. DOI: 10.1130/SPE153-p95

[257] Thompson R.R., Benedict L.G. Vitrinite reflectance as an indicator of coal metamorphism for cokemaking. Geol. Soc. Am., Spec. Pap, 1974, v. 153, pp. 95–108.

[258] Sen J. Fine structure in degraded, ancient and buried wood, and other fossilized plant derivatives. The Botanical Review, 1956, v. 22, iss. 6, pp. 343–374. DOI: 10.1007/BF02860822

[259] Rials T.G., Glasser W.G. Multiphase materials with lignin: 5. Effect of lignin structure on hydroxypropyl cellulose blend morphology. Polymer, 1990, v. 31, iss. 7, pp. 1333–1338. DOI: 10.1016/0032-3861(90)90226-O

[260] Rials T.G., Glasser W.G. Multiphase materials with lignin. IV. Blends of hydroxypropyl cellulose with lignin. J. of Applied Polymer science, 1989, v. 37, iss. 8, pp. 2399–2415. DOI: 10.1002/APP.1989.070370827

[261] Rials T.G., Glasser W.G. Multiphase materials with lignin. VI. Effect of cellulose derivative structure on blend morphology with lignin. Wood and fiber science, 1989, v. 21, iss. 1, pp. 80–90.

[262] Antoshchenko M., Tarasov V., Zakharova O., Zolotarova O., Petrov A. Analysis of metamorphism and tendency of black coals to spontaneous combustion. Technology Audit and Production Reserves, 2019, v. 6, iss. 1, pp. 18–25. DOI: 10.15587/2312-8372.2019.191902

[263] Kaneko T., Kaneko D., Wang S. High-performance lignin-mimetic polyesters. Plant Biotechnology, 2010, v. 27, iss. 3, pp. 243–250. DOI: 10.5511/plantbiotechnology.27.243

[264] Davé V., Prasad A., Marand H., Glasser W.G. Molecular organization of lignin during carbonization. Polymer, 1993, v. 34, iss. 15, pp. 3144–3154. DOI: 10.1016/0032-3861(93)90382-K

[265] Belousova O.A., Pavlovich O.N. Study of separation of the absorptive fraction of coal tar as polyazeotropic mixture. Coke and Chemistry, 2011, v. 54, iss. 8, pp. 297–298. DOI: 10.3103/S1068364X11080035

[266] Markova K., Vladimirov V., Vuchev V. Autoxidation processes during the genesis of low rank coal lithotypes. Oxidation Communications, 2006, v. 29, iss. 2, p. 454.

[267] Zhu C., Xu F., Chen C. Study on thermal evolution and coal metamorphism of the Longfan coal series in Nanton mining area. Zhongguo Kuangye Daxue Xuebao (J. of China University of Mining and Technology), 1996, v. 25, iss. 4, pp. 38–44.

[268] Kanana Y.F., Matveyev A.K. Temperature and geologic time in the regional metamorphism of coal. International Geology Review, 1989, v. 31, iss. 3, pp. 258–261. DOI: 10.1080/00206818909465878

[269] Yang Q., Tang D.Z. Effect of coal metamorphism on methane content and permeability of coal in North China. Earth Science – J. of China University of Geoscience, 2000, v. 25, iss. 3, pp. 273–278.

[270] Dudzińska A., Żyła M., Cygankiewicz J. Influence of The Metamorphism Grade and Porosity of Hard Coal on Sorption and Desorption of Propane (Wpływ Stopnia Metamorfizmu I Porowatości Węgli Kamiennych Na Sorpcję I Desorpcję Propanu). Archives of Mining Sciences, 2013, v. 58, iss. 3, pp. 867–879. DOI: 10.2478/amsc-2013-0060

[271] Castano J.R. Application of coal petrographic methods in relating level of organic metamorphism to generation of petroleum. AAPG Bulletin, 1973, v. 57, iss. 4, pp. 772–773. DOI: 10.1306/819A435E-16C5-11D7-8645000102C1865D

[272] Hood A., Gutjahr C.C.M., Heacock R.L. Organic metamorphism and the generation of petroleum. AAPG bulletin, 1975, v. 59, iss. 6, pp. 986–996. DOI: 10.1306/83D91F06-16C7-11D7-8645000102C1865D

[273] Sheta S., Afgan M.S., Hou Z., Yao S. C., Zhang L., Li Z., Wang Z. Coal analysis by laser-induced breakdown spectroscopy: a tutorial review. J. of Analytical Atomic Spectrometry, 2019, v. 34, iss. 6, pp. 1047–1082. DOI: 10.1039/C9JA00016J

[274] John R.C. Slag, gas, and deposit thermochemistry in a coal gasifier. J. of the Electrochemical Society, 1986, v. 133, iss. 1, p. 205. DOI: 10.1149/1.2108525

[275] Teng T., Wang J.G., Gao F., Ju Y. Complex thermal coal-gas interactions in heat injection enhanced CBM recovery. J. of Natural Gas Science and Engineering, 2016, v. 34, pp. 1174–1190. DOI: 10.1016/j.jngse.2016.07.074

[276] Drossel B., Schwabl F. Self organization in a forest-fire model. Fractals, 1993, v. 1, iss. 4, pp. 1022–1029. DOI: 10.1142/S0218348X93001118

[277] Scholl A.E., Taylor A.H. Fire regimes, forest change, and self-organization in an old-growth mixed-conifer forest, Yosemite National Park, USA. Ecological Applications, 2010, v. 20, iss. 2, pp. 362–380. DOI: 10.1890/08-2324.1

[278] Tzamtzis N., Pappa A., Statheropoulos M., Fasseas C. Effects of fire retardants on the pyrolysis of Pinus halepensis needles using microscopic techniques. J. of Analytical and Applied Pyrolysis, 2002, v. 63, iss. 1, pp. 147–156. DOI: 10.1016/S0165-2370(01)00147-4

[279] Liodakis S., Vorisis D., Agiovlasitis I.P. Testing the retardancy effect of various inorganic chemicals on smoldering combustion of Pinus halepensis needles. Thermochimica Acta, 2006, v. 444, iss. 2, pp. 157–165. DOI: 10.1016/j.tca.2006.03.010

[280] Pappa A., Mikedi K., Tzamtzis N., Statheropoulos M. TG-MS analysis for studying the effects of fire retardants on the pyrolysis of pine-needles and their components. J. of thermal analysis and calorimetry, 2006, v. 84, iss. 3, pp. 655–661. DOI: 10.1007/s10973-005-7201-y

[281] Liodakis S., Katsigiannis G., Lymperopoulou T. Ash properties of Pinus halepensis needles treated with diammonium phosphate. Thermochimica Acta, 2007, v. 453, iss. 2, pp. 136–146. DOI: 10.1016/j.tca.2006.11.022

[282] Agueda A., Liodakis S., Pastor E., Planas E. Characterization of the thermal degradation and heat of combustion of Pinus halepensis needles treated with ammonium-polyphosphate-based retardants. J. of Thermal Analysis and Calorimetry, 2009, v. 98, iss. 1, pp. 235–243. DOI: 10.1007/s10973-009-0134-0

[283] Liodakis S., Tsapara V., Agiovlasitis I. P., Vorisis D. Thermal analysis of Pinus sylvestris L. wood samples treated with a new gel–mineral mixture of short-and long-term fire retardants. Thermochimica Acta, 2013, v. 568, pp. 156–160. DOI: 10.1016/j.tca.2013.06.011

[284] Godinho M.H., Canejo J.P., Feio G., Terentjev E.M. Self-winding of helices in plant tendrils and cellulose liquid crystal fibers. Soft Matter, 2010, v. 6, iss. 23, pp. 5965–5970. DOI: 10.1039/C0SM00427H

[285] Geng Y., Almeida P.L., Fernandes S.N., Cheng C., Palffy-Muhoray P., Godinho M.H. A cellulose liquid crystal motor: a steam engine of the second kind. Scientific Reports, 2013, v. 3, iss. 1, pp. 1–5. DOI: 10.1038/srep01028

[286] Gilman J.W., Kashiwagi T., Lichtenhan J.D. Nanocomposites: a revolutionary new flame retardant approach. SAMPE Journ., 1997, v. 33, pp. 40–46.

[287] Lipska A.E. Isothermal degradation of untreated and fire retardant treated cellulose AT 350C. Naval Radiological Defense Lab San Francisco Calif, 1967, URL: https://apps.dtic.mil/sti/citations/AD0658717

[288] Garba B., Eboatu A.N., Atta-Elmannan M.A. Note: Effect of flame retardant treatment on energy of pyrolysis/combustion of wood cellulose. Fire and Materials, 1994, v. 18, iss. 6, pp. 381–383. DOI: 10.1002/fam.810180605

[289] Dollimore D., Hoath J. The fire retardant behavior of various chlorides on cellulose. J. of Thermal Analysis and Calorimetry, 1997, v. 49, iss. 2, pp. 649–656. DOI: 10.1007/BF01996747

[290] Rol F., Belgacem N., Meyer V., Petit-Conil M., Bras J. Production of fire-retardant phosphorylated cellulose fibrils by twin-screw extrusion with low energy consumption. Cellulose, 2019, v. 26, iss. 9, pp. 5635–5651. DOI: 10.1007/s10570-019-02447-4

[291] Ghanadpour M. Cellulose-based fire retardant material. Abstracts of Papers of the American Chemical Society, 2014, v. 247, p. 247.

[292] Cheng B.W. Study on properties and mechanism of eco-friendly fire-retardant cellulose. Journal of Tianjin Institute of Textile Science and Technology, 2005. v. 25, iss. 1, pp. 1–3.

[293] Zheng C., Li D., Ek M. Bio-based fire retardant and its application in cellulose-based thermal insulation materials. Abstracts of Papers of the American Chemical Society. American Chemical Society (ACS), 2018, v. 255, URL: https://cutt.us/yJXYk

[294] Gao M., Yan Y. Q. Fire Retardant Cellulose Characterized by Thermal Degradation Behavior. Advanced Materials Research, 2011, v. 197, pp. 631–634. DOI: 10.4028/www.scientific.net/AMR.197-198.631

[295] Liu A., Berglund L.A. Fire-retardant and ductile clay nanopaper biocomposites based on montmorrilonite in matrix of cellulose nanofibers and carboxymethyl cellulose. European Polymer J., 2013, v. 49, iss. 4, pp. 940–949.

[296] Medina L., Carosio F., Berglund L. Mechanically strong and fire-retardant nanocomposite aerogels based on cellulose nanofibers and montmorillonite clay. Abstract of Papers of the American Chemical Society, 2016. v. 252, URL: https://cutt.us/6WDHN

[297] Sahoo P.K., Jena D.K. Synthesis and study of mechanical and fire retardant properties of (carboxymethyl cellulose-g-polyacrylonitrile) / Montmorillonite biodegradable nanocomposite. J. of Polymer Research, 2018, v. 25, iss. 12, pp. 1–10. DOI: 10.1007/s10965-018-1659-3

[298] Castro D.O., Karim Z., Medina L., Häggström J.O., Carosio F., Svedberg A., Berglund L.A. The use of a pilot-scale continuous paper process for fire retardant cellulose-kaolinite nanocomposites. Composites Science and Technology, 2018, v. 162, pp. 215–224. DOI: 10.1016/j.compscitech.2018.04.032

[299] Liu P., Dai J., Jia H., Wang S. A Study on the Properties of Nano-SiO2 / Cellulose Fire-retardant Membranes. Advanced Textile Technology, 2010, v. 3, URL: https://cutt.us/TRdF1

[300] Chukhrov F.V. Kolloidy v zemnoy kore [Colloids in the earth’s crust]. AN SSSR, 1955, p. 671.

[301] Perel’man A.I. Geochemistry of Epigenesis. New York: Plenum Press, 1967, p. 266. DOI: 10.1007/978-1-4684-7520-3

[302] Rasmussen T.V. Insulation materials of cellulose versus mineral wool, fiberglass or Perlite. Exposures to fibers, dust, endotoxin and fire retardant additives during installation. Ikke angivet — Institutet för Arbetshygien, 2003, v. 49, pp. 187–188.

[303] Xu R., Wang H. Y., Sun R., Lei S. Outline of preparation and fire-retardant properties detection of nanocrystalline cellulose fire-retardant membranes. Guangzhou Chemical Industry, 2012, v. 22, pp. 8, 9, 28. URL(1). https://caod.oriprobe.com/articles/31453141/Outline_of_Preparation_and_Fire__retardant_Propert.htm; URL(2): https://caod.oriprobe.com/order.htm?id=31453141

[304] Bajwa D.S., Rehovsky C., Shojaeiarani J., Stark N., Bajwa S., Dietenberger M.A. Functionalized cellulose nanocrystals: A potential fire retardant for polymer composites. Polymers, 2019, v. 11, iss. 8. pp. 1361. DOI: 10.3390/polym11081361

[305] Takey E., Taussarova B., Burkitbay A. Fire retardant of cellulose textile materials based on sol-gel composition. Chemical J. of Kazakhstan, 2018, v. 63, iss. 3, pp. 163–168.

[306] Bertelli G., Camino G., Marchetti E., Costa L., Locatelli R. Structural studies on chars from fire retardant intumescent systems. Die Angewandte Makromolekulare Chemie: Applied Macromolecular Chemistry and Physics, 1989, v. 169, iss. 1, pp. 137–142. DOI: 10.1002/apmc.1989.051690112

[307] Sweet M.S., Winandy J.E. Influence of degree of polymerization of cellulose and hemicellulose on strength loss in fire-retardant-treated southern pine, 1999, v. 53, iss. 3, pp. 311–317. DOI: 10.1515/HF.1999.051

[308] Liodakis S., Tsoukala M. Ash leaching of forest species treated with phosphate fire retardants. Water, Air, and Soil Pollution, 2009, v. 199, iss. 1–4. pp. 171–182. DOI: 10.1007/s11270-008-9869-7

[309] Onofrei M.D., Dobos A.M., Stoica I., Olaru N., Olaru L., Ioan S. Lyotropic liquid crystal phases in cellulose acetate phthalate/hydroxypropyl cellulose blends. J. of Polymers and the Environment, 2014, v. 22, iss. 1, pp. 99–111. DOI: 10.1007/s10924-013-0618-7

[310] Mandlekar N., Cayla A., Rault F., Giraud S., Salaün F., Malucelli G., Guan J. P An overview on the use of lignin and its derivatives in fire retardant polymer systems. Lignin – Trends and Applications, 2018, v. 9, pp. 207–231. DOI: 10.5772/intechopen.72963

[311] Saxena N.K., Mathur A., Gupta D.R. Fire Retardant Lignin Based Adhesives for Wood Based Materials. The Fire Engineer, 1989, v. 1, pp. 23–26.

[312] Shukla A., Sharma V., Basak S., Ali S.W. Sodium lignin sulfonate: a bio-macromolecule for making fire retardant cotton fabric. Cellulose, 2019, v. 26, iss. 13, pp. 8191–8208. DOI: 10.1007/s10570-019-02668-7

[313] Mandlekar N., Cayla A., Rault F., Giraud S., Salaün F., Guan J. Valorization of industrial lignin as biobased carbon source in fire retardant system for Polyamide 11 blends. Polymers, 2019, v. 11, iss. 1, p. 180. DOI: 10.3390/polym11010180

[314] Mandlekar N., Malucelli G., Cayla A., Rault F., Giraud S., Salaün F., Guan J. Fire retardant action of zinc phosphinate and polyamide 11 blend containing lignin as a carbon source. Polymer Degradation and Stability, 2018, v. 153, pp. 63–74. DOI: 10.1016/j.polymdegradstab.2018.04.019

[315] Xing W., Yuan H., Yang H., Song L., Hu Y. Functionalized lignin for halogen-free flame retardant rigid polyurethane foam: preparation, thermal stability, fire performance and mechanical properties. J. of Polymer Research, 2013, v. 20, iss. 9, pp. 1–12. DOI: 10.1007/s10965-013-0234-1

[316] Verdolotti L., Oliviero M., Lavorgna M., Iannace S., Camino G., Vollaro P., Frache A. On revealing the effect of alkaline lignin and ammonium polyphosphate additives on fire retardant properties of sustainable zein-based composites. Polymer Degradation and Stability, 2016, v. 134, pp. 115–125. DOI: 10.1016/j.polymdegradstab.2016.10.001

[317] Zhou S., Tao R., Dai P., Luo Z., He M. Two-step fabrication of lignin-based flame retardant for enhancing the thermal and fire retardancy properties of epoxy resin composites. Polymer Composites, 2020, v. 41, iss. 5, pp. 2025–2035. DOI: 10.1002/pc.25517

[318] Chen S., Lin S., Hu Y., Ma M., Shi Y., Liu J., Wang X. A lignin-based flame retardant for improving fire behavior and biodegradation performance of polybutylene succinate. Polymers for Advanced Technologies, 2018, v. 29, iss. 12, pp. 3142–3150. DOI: 10.1002/pat.4436

[319] Wang R., Xu Z. Pyrolysis characteristics and pyrolysis products separation for recycling organic materials from waste liquid crystal display panels. J. of Hazardous Materials, 2016, v. 302, pp. 45–56. DOI: 10.1016/j.jhazmat.2015.09.038

[320] Sudhakara P., Kannan P. Diglycidylphenylphosphate based fire retardant liquid crystalline thermosets. Polymer Degradation and Stability, 2009, v. 94, iss. 4, pp. 610–616. DOI: 10.1016/j.polymdegradstab.2009.01.005

[321] Guittard F., de Givenchy E.T., Geribaldi S., Cambon A. Highly fluorinated thermotropic liquid crystals: an update. J. of Fluorine Chemistry, 1999, v. 100, iss. 1–2, pp. 85–96. DOI: 10.1016/S0022-1139(99)00205-5

[322] Jackson Jr.W.J., Kuhfuss H.F. Liquid crystal polymers. I. Preparation and properties of p-hydroxybenzoic acid copolyesters. J. of Polymer Science Part A: Polymer Chemistry, 1996, v. 34, iss. 15, pp. 3031–3046. DOI: 10.1002/pola.1996.863

[323] Du X. H., Zhao C. S., Wang Y. Z., Zhou Q., Deng Y., Qu M. H., Yang B. Thermal oxidative degradation behaviours of flame-retardant thermotropic liquid crystal copolyester/PET blends. Materials Chemistry and Physics, 2006, v. 98, iss. 1, pp. 172–177.

DOI: 10.1016/j.matchemphys.2005.09.013

[324] Deng Y., Zhao C.S., Wang Y.Z. Effects of phosphorus-containing thermotropic liquid crystal copolyester on pyrolysis of PET and its flame retardant mechanism. Polymer Degradation and Stability, 2008, v. 93, iss. 11, pp. 2066–2070. DOI: 10.1016/j.polymdegradstab.2008.02.022

[325] Okamoto M., Ichikawa Y., Inoue T., Yamanaka T. Flame-retardant liquid crystal polyester composition, process for preparation thereof and injection-molded article composed thereof. U.S. Patent, no. 5,085,807, 1992.

[326] Yabuhara T., Tada Y., Kameshima T., Nakano S., Nishioka Y., Takase H. Flame-retardent resin compositions compring thermoplastic resin, thermotropic liquid crystal polymer, and hoalogen-free phosphazen compound. U.S. Patent, no. 6,518,336, 2003.

[327] Jing J., Zhang Y., Fang Z.P., Wang D.Y. Core-shell flame retardant/graphene oxide hybrid: a self-assembly strategy towards reducing fire hazard and improving toughness of polylactic acid. Composites Science and Technology, 2018, v. 165, pp. 161–167.

DOI: 10.1016/j.compscitech.2018.06.024

[328] Wang X., Zhou S., Xing W., Yu B., Feng X., Song L., Hu Y. Self-assembly of Ni–Fe layered double hydroxide/graphene hybrids for reducing fire hazard in epoxy composites. J. of Materials Chemistry A, 2013, v. 1, iss. 13, pp. 4383–4390. DOI: 10.1039/C3TA00035D

[329] Zhou K., Gao R., Qian X. Self-assembly of exfoliated molybdenum disulfide (MoS2) nanosheets and layered double hydroxide (LDH): towards reducing fire hazards of epoxy. J. of Hazardous Materials, 2017, v. 338, pp. 343–355. DOI: 10.1016/j.jhazmat.2017.05.046

[330] Wang W., Wang X., Pan Y., Liew K. M., Mohamed O. A., Song L., Hu Y. Synthesis of phosphorylated graphene oxide based multilayer coating: Self-assembly method and application for improving the fire safety of cotton fabrics. Industrial & Engineering Chemistry Research, 2017, v. 56, iss. 23, pp. 6664–6670. DOI: 10.1021/acs.iecr.7b01293

[331] Shang S., Ma X., Yuan B., Chen G., Sun Y., Huang C., Chen X. Modification of halloysite nanotubes with supramolecular self-assembly aggregates for reducing smoke release and fire hazard of polypropylene. Composites Part B: Engineering, 2019, v. 177, p. 107371. DOI: 10.1016/j.compositesb.2019.107371

[332] Wang W., Kan Y., Liu J., Liew K. M., Liu L., Hu Y. Self-assembly of zinc hydroxystannate on amorphous hydrous TiO2 solid sphere for enhancing fire safety of epoxy resin. J. of Hazardous Materials, 2017, v. 340, pp. 263–271.

[333] Zhao S., Yin L., Zhou Q., Liu C., Zhou K. In situ self-assembly of zeolitic imidazolate frameworks on the surface of flexible polyurethane foam: towards for highly efficient oil spill cleanup and fire safety. Applied Surface Science, 2020, v. 506, p. 144700.

DOI: 10.1016/j.apsusc.2019.144700

[334] Huang C., Fang G., Tao Y., Meng X., Lin Y., Bhagia S., Ragauskas A. J. Nacre-inspired hemicelluloses paper with fire retardant and gas barrier properties by self-assembly with bentonite nanosheets. Carbohydrate Polymers, 2019, v. 225, p. 115219.

DOI: 10.1016/j.carbpol.2019.115219

[335] Xie H., Lai X., Wang Y., Li H., Zeng X. A green approach to fabricating nacre-inspired nanocoating for super-efficiently fire-safe polymers via one-step self-assembly. J. of Hazardous Materials, 2019, v. 365, pp. 125–136. DOI: 10.1016/j.jhazmat.2018.10.099

[336] Aseeva R., Serkov B., Sivenkov A. The Change in Fire Behavior of Different Timber Species After Accelerated Artificial Aging. Fire Behavior and Fire Protection in Timber Buildings. Springer, Dordrecht, 2014, pp. 259–279.

[337] Voronova M.I., Surov O.V., Rubleva N.V., Kochkina N.E., Prusova S.M., Gismatulina Yu.A., Budaeva V.V., Zakharov A.G Svoystva nanokristallicheskoy tsellyulozy, poluchennoy iz tsellyuloz odnoletnikh rasteniy [Properties nanocrystalline cellulose obtained from the celluloses of annual plants]. Zhidkie kristally i ikh prakticheskoe ispol’zovanie [Liquid crystals and their practical use], 2017, v. 17, no. 4, pp. 97–105.

Author’s information

Gradov Oleg Valer’evich — Senior Researcher of the Department of Dynamics of Chemical and Biological Processes of FRC CP RAS, o.v.gradov@gmail.com

10 ДРЕВЕСИНА КАК ХИМИЧЕСКОЕ СЫРЬЕ. ИСТОРИЯ И СОВРЕМЕННОСТЬ.
V. ДРЕВЕСНАЯ ЦЕЛЛЮЛОЗА КАК ПРИРОДНОЕ ПОЛИМЕРНОЕ СЫРЬЕ. ЧАСТЬ I
128–142

УДК 676.16: 630.86

DOI: 10.18698/2542-1468-2023-3-128-142

Шифр ВАК 4.3.4

Г.Н. Кононов, А.Н. Веревкин, Ю.В. Сердюкова, Д.Д. Хвалько

ФГБОУ ВО «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)», Мытищинский филиал, Россия, 141005, Московская обл., г. Мытищи, ул. 1-я Институтская, д. 1

verevkin@mgul.ac.ru

Рассмотрены вопросы истории развития химической переработки облагороженных технических древесных целлюлоз в целях получения на их основе аддитивных соединений, сложных и простых эфиров. Подробно изложена историческая трансформация технологий получения растительного пергамента, фибры, медно-аммиачного волокна, синтеза нитратов, ксантогенатов и ацетатов целлюлозы, а также методов переработки этих производных в целевые продукты и материалы. Приведено историческое описание получения и перспективы применения простых эфиров целлюлозы и модификации гидратцеллюлозных волокон. Настоящая статья является пятой в цикле «Древесина как химическое сырье. История и современность»; предыдущие части опубликованы в журнале «Лесной вестник» / Forestry Bulleten (2020, т. 24 № 1, № 5; 2021, т. 25 № 3; 2022, т. 26 № 1).

Ключевые слова: аддитивные соединения, нитраты целлюлозы, ксантогенаты целлюлозы, ацетаты целлюлозы, простые эфиры целлюлозы, привитые сополимеры

Ссылка для цитирования: Кононов Г.Н., Веревкин А.Н., Сердюкова Ю.В., Хвалько Д.Д. Древесина как химическое сырье. История и современность. V. Древесная целлюлоза как природное полимерное сырье. Часть I // Лесной вестник / Forestry Bulletin, 2023. Т. 27. № 3. С. 128–142. DOI: 10.18698/2542-1468-2023-3-128-142

Список литературы

[1] Пен Р.З. Технология целлюлозы. Красноярск: Изд-во СИБГТУ, 2006. Т. 1. 343 с.; Т. 2. 349 с.

[2] Гесс К. Химия целлюлозы и ее спутников / пер. с нем. З. Роговина, А. Пакшвер; под ред. и с доп. проф. П. Шорыгина. Л.: Госхимтехиздат, 1934. 620 с.

[3] Кононов Г.Н. Дендрохимия. Химия, нанохимия и биогеохимия компонентов клеток тканей и органов древесных растений: в 2 т. М.: МГУЛ, 2015. Т. 1. 480 с.

[4] Словарь целлюлозно-бумажного производства / Е.М. Беркман, С.М. Вишневский, Л.О. Иоффе; под ред. Н.В. Рюхина. М.: Лесная пром-сть, 1969. 299 с.

[5] Васильев Д.Н. Производство фибры. М.-Л.: Гослесбумиздат, 1959. 170 с.

[6] Пузырев С.А., Бурова Т.С., Кречетова С.П., Рыжов П.Т. Технология обработки и переработки бумаги и картона. М.: Лесн. пром-сть, 1985. 312 с.

[7] Разумеев А.А. Справочник по производству искусственного волокна / под ред. А.И. Меоса. М.: ОНТИ, 1937. 516 с.

[8] Роговин З.А. Основы химии и технологии химических волокон. В 2 т. М.: Химия, 1974. Т. 1. 518 с.

[9] Роговин З.А. Химия и технология искусственных волокон. М.: Гизлегпром, 1952. 676 с.

[10] Хувинк Р., Ставерман А. Химия и технология полимеров. В 2 т. М.; Л.: Химия 1966. Т. 2. 1124 с.

[11] Голдинг Б. Химия и технология полимерных материалов / пер. с англ. В.В. Арнольдова / под ред. Н.Т. Романченко. М.: Изд-во иностранной литературы, 1963. 666 с.

[12] Ушаков С.Н. Эфиры целлюлозы и пластические массы на их основе. Л.: Госхимиздат, 1941. 502 с.

[13] Закощиков А.П. Нитроцеллюлоза. М.: Оборонгиз, 1950. 372 с.

[14] Киттель Г. Целлюлозные лаки / под ред. Е.Ф. Беленького. Л.: Госхимиздат, 1957. 327 с.

[15] Бытенский В.Я., Кузнецова Е.П. Производство эфиров целлюлозы / под ред. Н.И. Кленковой. Л.: Химия. 1974. 206 с.

[16] Филатова А.Е., Сульман А.М., Шиманская Е.И., Гребенникова О.В., Монжаренко М.А. Влияние свойств полимерной матрицы катализатора на процесс переработки растительной биомассы // Вестник Тверского государственного университета. Серия: Химия, 2023. № 1 (51). С. 45–50.

[17] Хакимова Ф.Х., Носкова О.А., Котельников С.А., Синяев К.А. Получение природного полимерного материала для использования в энергонасыщенных композициях // Вестник Пермского национального исследовательского политехнического университета. Аэрокосмическая техника, 2019. № 56. С. 72–82.

[18] Косточко А.В., Валишина З.Т., Дебердеев Р.Я. Особенности структуры и свойств нитратов пеньковой целлюлозы // Пластические массы, 2019. № 9-10. С. 41–44.

[19] Крюгер Д. Ацетилцеллюлоза и другие органические эфиры целлюлозы / под ред. З.А. Роговина. М.: ГОНТИ, 1938. 448 с.

[20] Аким Э.Л., Перепечкин Л.П. Целлюлоза для ацетилирования и ацетаты целлюлозы. М.: Лесн. пром-сть, 1971. 232 с.

[21] Яценкова О.В., Скрипников А.М., Карачаров А.А., Мазурова Е.В., Воробьев С.А., Кузнецов Б.Н. Новый метод получения микрофибриллированной целлюлозы из древесины ели // Химия растительного сырья, 2020. № 1. С. 303–314.

[22] Степина И.В., Содомон М., Кононов Г.Н., Петухов В.А. Компонентный состав модифицированного растительного сырья // Инженерный вестник Дона, 2022. № 9 (93). С. 223–231.

[23] Кононов Г.Н., Веревкин А.Н., Сердюкова Ю.В. Миколиз древесины, его продукты и их использование // Сб. тезисов докл. Междунар. симп. МФ МГТУ им. Н.Э. Баумана «Лесной комплекс в цифровой экономике». М.: Научные технологии, 2019. С. 89–90.

[24] Корнев П.П., Максимов А.А., Баранова А.Е., Осовская И.И. Получение целлюлозы из растительного сырья // Леса России: политика, промышленность, наука, образование. материалы VII Всероссийской научно-технической конференции. Санкт-Петербург, 2022. С. 198-199.

[25] Никитина З.К., Гордонова И.К. Изучение целлюлазной активности коллекционных штаммов мицелиальных грибов // Вопросы биологической, медицинской и фармацевтической химии, 2022. Т. 25. № 11. С. 29–35.

[26] Минес К. Бензилцеллюлоза и другие простые и сложные эфиры целлюлозы. М.: Гослестехиздат, 1936. 117 с.

[27] Luginina A.A., Kuznetsov S.V., Alexandrov A.A., Gainutdinov R.V., Petukhov D.I., Voronov V.V., Chernova E.V., Fedorov P.P. High lignin content cellulose nanofibrils obtained from thermomechanical pulp // Nanosystems: Physics, Chemistry, Mathematics, 2022. Т. 13. № 6. С. 698–708.

Сведения об авторах

Кононов Георгий Николаевич — канд. техн. наук, доцент МГТУ им. Н.Э. Баумана (Мытищинский филиал), академик РАЕН, уч. секретарь секции «Химия и химическая технология древесины» РХО им. Д.И. Менделеева, kononov@mgul.ac.ru

Веревкин Алексей Николаевич — канд. техн. наук, доцент МГТУ им. Н.Э. Баумана (Мытищинский филиал), verevkin@mgul.ac.ru

Сердюкова Юлия Владимировна — ст. преподаватель МГТУ им. Н.Э. Баумана (Мытищинский филиал), caf-htdip@mgul.ac.ru

Хвалько Даниил Денисович — студент МГТУ им. Н.Э. Баумана (Мытищинский филиал), verevkin@mgul.ac.ru

WOOD AS CHEMICAL RAW MATERIAL. HISTORY AND MODERNITY V. WOOD PULP AS NATURAL POLYMER RAW MATERIAL. PART I

G.N. Kononov, A.N. Verevkin, Yu.V. Serdyukova. D.D. Khvalko

BMSTU (Mytishchi branch), 1, 1st Institutskaya st., 141005, Mytishchi, Moscow reg., Russia

verevkin@mgul.ac.ru

The history of chemical processing development of the improved technical wood cellulose for the receiving of the additive derivatives, complex and simple ethers on their basis are considered. The historical transformation of technologies for the production of plant parchment, fiber, copper-ammonia fiber, synthesis of cellulose nitrates, xanthogenates and acetates, as well as methods for processing these derivatives into target products and materials is described in detail. The historical description of the preparation and prospects for the use of cellulose esters and modification of cellulose fiber hydrate is given. This article is the fifth in the cycle «Wood as a chemical raw material. History and modernity»; the previous parts were published in the journal Lesnoy vestnik / Forestry Bulletin (2020, v. 24, no 1, № 5; 2021, v. 25 no. 3; 2022, v. 26 no. 1).

Keywords: additive compounds, cellulose nitrates, cellulose xanthogenates, cellulose acetates, cellulose esters, grafted copolymers

Suggested citation: Kononov G.N., Verevkin A.N., Serdyukova Yu.V., Khval’ko D.D. Drevesina kak khimicheskoe syr’e. Istoriya i sovremennost’. V. Drevesnaya tsellyuloza kak prirodnoe polimernoe syr’e. Chast’ I [Wood as chemical raw material. History and modernity. V. Wood pulp as natural polymer raw material. Part I]. Lesnoy vestnik / Forestry Bulletin, 2023, vol. 27, no. 3, pp. 128–142. DOI: 10.18698/2542-1468-2023-3-128-142

References

[1] Pen R.Z. Tekhnologiya tsellyulozy [Pulp Technology]. Krasnoyarsk: SIBGTU, 2006, v. 1, 343 p; v. 2, 349 p.

[2] Gess K. Khimiya tsellyulozy i ee sputnikov [Pulp chemistry and its satellites]. Ed. P. Shorygina. Leningrad: Goskhimtekhizdat, 1934, 620 p.

[3] Kononov G.N. Dendrokhimiya. Khimiya, nanokhimiya i biogeokhimiya komponentov kletok tkaney i organov drevesnykh rasteniy [Dendrochemy. Chemistry, nanochemistry and biogeochemistry of components of tissue cells and organs of woody plants], in 2 v. Moscow: MGUL, 2015, v. 1, 480 p.

[4] Slovar’ tsellyulozno-bumazhnogo proizvodstva [Dictionary of pulp and paper production] / E.M. Berkman, S.M. Vishnevsky, L.O. Ioffe. Ed N.V. Ryukhin. Moscow: Lesnaya promyshlennost’ [Forestry industry], 1969, 299 p.

[5] Vasil’ev D.N. Proizvodstvo fibry [Production of fiber]. Moscow–Leningrad: Goslesbumizdat, 1959, 170 p.

[6] Puzyrev S.A., Burova T.S., Krechetova S.P., Ryzhov P.T. Tekhnologiya obrabotki i pererabotki bumagi i kartona [Paper and cardboard processing and recycling technology]. Moscow: Lesnaya promyshlennost’ [Forestry industry], 312 p.

[7] Razumeev A.A. Spravochnik po proizvodstvu iskusstvennogo volokna [Handbook on the artificial fiber production]. Ed. A.I. Meos. Moscow: ONTI, 1937, 516 p.

[8] Rogovin Z.A. Osnovy khimii i tekhnologii khimicheskikh volokon [Fundamentals of chemistry and technology of chemical fibers] [For universities]. In 2 vol. Moscow: Himiya [Chemistry], 1974, v. 1, 518 p.

[9] Rogovin Z.A. Khimiya i tekhnologiya iskusstvennykh volokon [Chemistry and technology of artificial fibers]. Moscow: Gizlegprom, 1952, 676 p.

[10] Khuvink R., Staverman A. Khimiya i tekhnologiya polimerov [Chemistry and technology of polymers]. In 2 vol. Moscow–Leningrad: Publishing House Chemistry, 1966, v. 2, 1124 p.

[11] Golding B. Khimiya i tekhnologiya polimernykh materialov [Chemistry and technology of polymer materials]. Ed. N.T. Romanchenko. Moscow: Publishing House of Foreign Literature, 1963, 666 p.

[12] Ushakov S.N. Efiry tsellyulozy i plasticheskie massy na ikh osnove [Cellulose esters and plastic masses based on them]. Leningrad: Goskhimizdat, 1941, 502 p.

[13] Zakoshchikov A.P. Nitrotsellyuloza [Nitrocellulose]. Moscow: Publishing house and printing house Oborongiz, 1950, 372 p.

[14] Kittel’ G. Tsellyuloznye laki [Cellulose varnishes]. Ed. E.F. Belenky. Leningrad: Goskhimizdat, 1957, 327 p.

[15] Bytenskiy V.Ya., Kuznetsova E.P. Proizvodstvo efirov tsellyulozy [Production of cellulose esters]. Ed. N.I. Klenkova. Leningrad: Chemistry: Leningrad Branch, 1974, 206 p.

[16] Filatova A.E., Sul’man A.M., Shimanskaya E.I., Grebennikova O.V., Monzharenko M.A. Vliyanie svoystv polimernoy matritsy katalizatora na protsess pererabotki rastitel’noy biomassy [Influence of the properties of the polymer matrix of the catalyst on the processing of plant biomass]. Vestnik Tverskogo gosudarstvennogo universiteta. Seriya: Khimiya [Bulletin of the Tver State University. Series: Chemistry], 2023, no. 1 (51), pp. 45–50.

[17] Khakimova F.Kh., Noskova O.A., Kotel’nikov S.A., Sinyaev K.A. Poluchenie prirodnogo polimernogo materiala dlya ispol’zovaniya v energonasyshchennykh kompozitsiyakh [Obtaining natural polymeric material for use in energy-saturated compositions]. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Aerokosmicheskaya tekhnika [Bulletin of the Perm National Research Polytechnic University. Aerospace Engineering], 2019, no. 56, pp. 72–82.

[18] Kostochko A.V., Valishina Z.T., Deberdeev R.Ya. Osobennosti struktury i svoystv nitratov pen’kovoy tsellyulozy [Features of the structure and properties of hemp cellulose nitrates]. Plasticheskie massy [Plastic masses], 2019, no. 9–10, pp. 41–44.

[19] Kryuger D. Atsetiltsellyuloza i drugie organicheskie efiry tsellyulozy [Acetylcellulose and other organic cellulose esters]. Ed. Z.A. Rogovin. Moscow: GONTI, 1938, 448 p.

[20] Akim E.L., Perepechkin L.P. Tsellyuloza dlya atsetilirovaniya i atsetaty tsellyulozy [Cellulose for acetylation and cellulose acetates]. Moscow: Forest Industry, 1971, 232 p.

[21] Yatsenkova O.V., Skripnikov A.M., Karacharov A.A., Mazurova E.V., Vorob’ev S.A., Kuznetsov B.N. Novyy metod polucheniya mikrofibrillirovannoy tsellyulozy iz drevesiny eli [A new method for obtaining microfibrillated cellulose from spruce wood]. Khimiya rastitel’nogo syr’ya [Chemistry of plant raw materials], 2020, no. 1, pp. 303–314.

[22] Stepina I.V., Sodomon M., Kononov G.N., Petukhov V.A. Komponentnyy sostav modifitsirovannogo rastitel’nogo syr’ya [Component composition of modified plant raw materials]. Inzhenernyy vestnik Dona [Engineering Bulletin of the Don], 2022, no. 9 (93), pp. 223–231.

[23] Kononov G.N., Verevkin A.N., Serdyukova Yu.V. Mikoliz drevesiny, ego produkty i ikh ispol’zovanie. Collection of abstracts of the international symposium of the MF Bauman Moscow State Technical University «Forest Complex in the digital Economy». Moscow: Scientific Technologies, 2019, pp. 89–90.

[24] Kornev P.P., Maksimov A.A., Baranova A.E., Osovskaya I.I. Poluchenie tsellyulozy iz rastitel’nogo syr’ya [Obtaining cellulose from vegetable raw materials]. Lesa Rossii: politika, promyshlennost’, nauka, obrazovanie. materialy VII Vserossiyskoy nauchno-tekhnicheskoy konferentsii [Forests of Russia: politics, industry, science, education. materials of the VII All-Russian Scientific and Technical Conference]. St. Petersburg, 2022, pp. 198–199.

[25] Nikitina Z.K., Gordonova I.K. Izuchenie tsellyulaznoy aktivnosti kollektsionnykh shtammov mitselial’nykh gribov [Study of the cellulase activity of collection strains of filamentous fungi]. Voprosy biologicheskoy, meditsinskoy i farmatsevticheskoy khimii [Questions of Biological, Medical and Pharmaceutical Chemistry], 2022, v. 25, no. 11, pp. 29–35.

[26] Mines K. Benziltsellyuloza i drugie prostye i slozhnye efiry tsellyulozy [Benzylcellulose and other simple and complex cellulose esters]. Moscow: Goslestehizdat, 1936, 117 p.

[27] Luginina A.A., Kuznetsov S.V., Alexandrov A.A., Gainutdinov R.V., Petukhov D.I., Voronov V.V., Chernova E.V., Fedorov P.P. High lignin content cellulose nanofibrils obtained from thermomechanical pulp. Nanosystems: Physics, Chemistry, Mathematics, 2022. Т. 13. № 6. С. 698–708.

Authors’ information

Kononov Georgiy Nikolaevich — Cand. Sci. (Tech.), Associate Professor of the BMSTU (Mytishchi branch), Corresponding Member of the Russian Academy of Natural Sciences, the Scientific Secretary of section «Chemistry and engineering chemistry of wood» RHO of D.I. Mendeleyev, kononov@mgul.ac.ru

Verevkin Aleksey Nikolaevich — Cand. Sci. (Chem.), Associate Professor of the BMSTU (Mytishchi branch), verevkin@mgul.ac.ru

Serdyukova Yulia Vladimirovna — Senior Lecturer of the BMSTU (Mytishchi branch),

caf-htdip@mgul.ac.ru

Khvalko Daniil Denisovich — Student of the BMSTU (Mytishchi branch), verevkin@mgul.ac.ru

11 ИМПУЛЬСНАЯ СУШКА ЗАГОТОВОК ИЗ ДРЕВЕСИНЫ ИРОКО, МЕРБАУ И ВЕНГЕ В КОНВЕКТИВНОЙ СУШИЛЬНОЙ КАМЕРЕ 143–149

УДК 674.037.4

DOI: 10.18698/2542-1468-2023-3-143-149

Шифр ВАК 4.3.4

Д.И. Деянов1, А.А. Косарин2, С.А. Моисеев3, Г.Н. Курышов

1ФГБОУ ВО «Московский государственный технический университет имени Н.Э. Баумана (национальный исследова- тельский университет), Мытищинский филиал, Россия, 141005, Московская обл., г. Мытищи, ул. 1-я Институтская, д. 1

2ООО «Форсклад», Россия, 121359, г. Москва, ул. Партизанская, д. 40

3АО «Волга», Россия, 606407, Нижегородская обл., г. Балахна, ул. Горького, д. 1

d.dejanov@yandex.ru

Приведен обзор литературных источников по физико-механическим свойствам древесины ироко, мербау и венге. Указаны места произрастания данных пород. Изложено описание разновидности свойств рассматриваемых пород в зависимости от ареала распространения. Представлен обзор литературных источников по режимам и параметрам сушки заготовок из древесины ироко, мербау и венге. Рассмотрены режимы сушки заготовок из древесины ироко, мербау и венге параметры которых зависят от текущей влажности древесины, и принципы построения импульсных режимов сушки. Определены режимы импульсной сушки заготовок из древесины ироко толщиной 25 мм, мербау — толщиной 25 мм и венге — толщиной 45 мм. Показано, что использование импульсных режимов сушки заготовок позволяет сократить потребление электроэнергии и повысить качество продукции.

Ключевые слова: заготовки из древесины ироко, мербау и венге, импульсный режим, режимы сушки, показатели качества

Ссылка для цитирования: Деянов Д.И., Косарин А.А., Моисеев С.А., Курышов Г.Н. Импульсная сушка заготовок из древесины ироко, мербау и венге в конвективной сушильной камере // Лесной вестник / Forestry Bulletin, 2023. Т. 27. № 3. С. 143–149. DOI: 10.18698/2542-1468-2023-3-143-149

Список литературы

[1] Древесные породы мира. Т. 1. М.: Лесная пром-сть, 1982. 328 с.

[2] Энциклопедия древесных пород. Справочник сортов древесины. М.: Кладезь-букс, 2008. 192 с.

[3] Фабрика «Мебель и интерьеры», Ироко. 2006–2022. URL: https://www.mebelib.ru/wood-tree/iroko/ (дата обращения 25.09.2022)

[4] Курышов Г.Н., Косарин А.А. Импульсная сушки заготовок из древесины махагони и мербау // Науч. труды МГУЛ. Вып. 349. М.: МГУЛ, 2010. С. 46–48.

[5] Фабрика «Мебель и интерьеры», Мербау. 2006–2022. URL: https://www.mebelib.ru/wood-tree/merbau/ (дата обращения 25.09.2022)

[6] Фабрика «Мебель и интерьеры», Венге. 2006–2022. URL: https://www.mebelib.ru/wood-tree/wenge/ (дата обращения 25.09.2022)

[7] Косарин А.А., Курышов Г.Н. Импульсные режимы сушки для заготовок из древесины ироко // Науч. труды МГУЛ. Вып. 353. М.: МГУЛ, 2011. С. 27–28.

[8] WOODSTOCK. Эксперт по дереву. Пиломатериалы Ироко // 2006–2022 WoodStock — Шпон и пиломатериалы ценных пород. URL: https://www.woodstock.su/products/iroko_iroko_p/ (дата обращения 25.09.2022).

[9] WOODSTOCK. Эксперт по дереву. Пиломатериалы Мербау // 2006–2022 WoodStock — Шпон и пиломатериалы ценных пород. URL: https://www.woodstock.su/products/merbau_merbau_p/ (дата обращения 25.09.2022).

[10] WOODSTOCK. Эксперт по дереву. Пиломатериалы Венге // 2006–2022 WoodStock — Шпон и пиломатериалы ценных пород. URL: https://www.woodstock.su/products/venge_wenge_p/ (дата обращения 25.09.2022).

[11] Расев А.И., Курышов Г.Н., Ляшенко С.В. Прерывистые режимы сушки пиломатериалов и заготовок // Деревообрабатывающая пром-сть, 1993. № 3. С. 15–16.

[12] Расев А.И., Курышов Г.Н., Ляшенко С.В. Способ сушки пиломатериалов. Патент №2027127 РФ. Опубл. 20.01.1995. Бюл. № 2.

[13] Расев А.И., Курышов Г.Н. Технология сушки пиломатериалов в аэродинамических сушильных камерах // Деревообработка в России, 1998. № 1. С. 3–4.

[14] Курышов Г.Н. Сушка пиломатериалов из груши импульсными режимами // Науч. труды МГУЛ. Вып. 319. М.: МГУЛ, 2003. С. 20–21.

[15] Косарин А.А., Курышов Г.Н. Импульсная сушка пиломатериалов из древесины ольхи // Науч. труды МГУЛ. Вып. 368. М.: МГУЛ, 2013. С. 25–27.

[16] Курышов Г.Н., Косарин А.А., Расева Е.А. Способ импульсной сушки пиломатериалов. Патент №2607923 РФ. Опубл. 11.04.2017. Бюл. № 2.

[17] Курышов Г.Н., Косарин А.А., Расева Е.А. Способ импульсной сушки пиломатериалов. Патент №2615854 РФ. Опубл. 11.04.2017. Бюл. № 11.

[18] Курышов Г.Н., Косарин А.А., Косарина А.А. Способ импульсной сушки. Пат. №2637288 РФ. Опубл. 01.12.2017. Бюл. № 34.

[19] Косарин А.А. Технология импульсной сушки пиломатериалов: автореф. дис. … канд. техн. наук, 2012. 22 с.

[20] Серговский П.С., Расев А.И. Гидротермическая обработка и консервирование древесины. М.: Лесная пром-сть, 1987. 360 с.

[21] Расев А.И. Сушка древесины. СПб.: Лань, 2010. 416 с.

[22] Косарин А.А., Курышов Г.Н. Импульсные режимы сушки для заготовок из древесины Ироко // Науч. труды МГУЛ. Вып. 353. М.: МГУЛ, 2011. С. 27–28.

[23] Курышов Г.Н., Косарин А.А. Импульсная сушка заготовок из древесины махагони и мербау // Науч. труды МГУЛ. Вып. 349. М.: МГУЛ, 2010. С. 46–48.

[24] Руководящие технические материалы по технологии камерной сушки пиломатериалов. Архангельск: Изд-во ОАО «НАУЧдревпром-ЦНИИМОД», 2000. 125 с.

[25] Boone R.S., Kozlik C.J., Bois P.J., Wengert E.M. Dry kiln schedules for commercial woods-temperateand tropical. Gen. Tech. Rep. FPL-GTR-57. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 1988, 158 p.

Сведения об авторах

Деянов Дмитрий Игоревич — аспирант ФГБОУ ВО «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет), Мытищинский филиал, d.dejanov@yandex.ru

Косарин Анатолий Александрович — канд. техн. наук, доцент, заместитель директора ООО «Форсклад», Kosarin2008@yandex.ru

Моисеев Сергей Андреевич — магистрант МГТУ им Н.Э. Баумана (Мытищинский филиал), сотрудник АО «Волга», rf-baf2@mail.ru

Курышов Григорий Николаевич — канд. техн. наук, доцент

IMPULSE DRYING OF AFRICAN TEAK, MERBAU AND WENGE WOOD BLANKS IN A CONVECTION DRYING CHAMBER

D.I. Deyanov1, A.A. Kosarin2, S.A. Moiseev3, G.N. Kuryshov

1BMSTU (Mytishchi branch), 1, 1st Institutskaya st., 141005, Mytishchi, Moscow reg., Russia

2OOO «Forcklad», 40, Partizanskaya st., 121359, Moscow, Russia

3Volga JSC, 1, Gorky st., 606407, Balakhna, Nizhny Novgorod reg., Russia

d.dejanov@yandex.ru

A review of literature sources on the physical and mechanical properties of iroko, merbau and wenge wood is given. The places of growth of these breeds are indicated. The description of the varieties of properties of the rocks under consideration, depending on the distribution area, is presented. A review of literature sources on the modes and parameters of drying of iroko, merbau and wenge wood blanks is presented. The drying modes of iroko, merbau and wenge wood blanks are considered, the parameters of which depend on the current moisture content of the wood and the principles of constructing pulse drying modes. The modes of pulse drying of iroko wood blanks with a thickness of 25 mm, merbau with a thickness of 25 mm and wenge with a thickness of 45 mm are determined. It is shown that the use of pulsed drying modes of workpieces can reduce electricity consumption and improve product quality.

Keywords: iroko, merbau and wenge wood blanks, impulse drying, drying mode, quality indicators

Suggested citation: Deyanov D.I., Kosarin A.A., Moiseev S.A., Kuryshov G.N. Impul’snaya sushka zagotovok iz drevesiny iroko, merbau i venge v konvektivnoy sushil’noy kamere [Impulse drying of african teak, merbau and wenge wood blanks in a convection drying chamber]. Lesnoy vestnik / Forestry Bulletin, 2023, vol. 27, no. 3, pp. 143–149. DOI: 10.18698/2542-1468-2023-3-143-149

References

[1] Drevesnye porody mira [Timber species of the world], in 3 t. T. 1. Moscow: Lesnaya promyshlennost’ [Timber industry], 1982, 328 p.

[2] Entsiklopediya drevesnykh porod. Spravochnik sortov drevesiny [Encyclopedia of Wood Species. Directory of Wood Varieties.]. Moscow: Kladez’-buks [Kladez-Books], 2008, 192 p.

[3] Fabrika «Mebel’ i inter’yery», Iroko [Factory «Furniture and interiors», Iroko] 2006–2022. Avaliable at: https://www.mebelib.ru/wood-tree/iroko/ (accessed 25.09.2022).

[4] Kuryshov G.N., Kosarin A.A. Impul’snaya sushka zagotovok iz drevesiny makhagoni i merbau [Impulse drying of blanks from mahogany and merbau wood]. Nauchnye trudy MGUL [Scientific works of MSFU], 2010, iss. 349, pp. 46–48.

[5] Fabrika «Mebel’ i inter’yery», Merbau [Factory «Furniture and Interiors», Merbau] 2006–2022.

Avaliable at: https://www.mebelib.ru/wood-tree/merbau/ (accessed 25.09.2022).

[6] Fabrika «Mebel’ i inter’yery», Venge [Factory «Furniture and interiors», Wenge] 2006–2022.

Avaliable at: https://www.mebelib.ru/wood-tree/wenge/ (accessed 25.09.2022).

[7] Kosarin A.A., Kuryshov G.N. Impul’snye rezhimy sushki dlya zagotovok iz drevesiny iroko [Impulse drying modes for Iroko wood products]. Nauchnye trudy MGUL [Scientific works of MSFU], 2011, iss. 353, pp. 27–28.

[8] WOODSTOCK. Ekspert po derevu. Pilomaterialy Iroko 2006–2022 WoodStock — Shpon i pilomaterialy tsennykh porod [WOODSTOCK. Wood Expert. Iroko Lumber // 2006–2022 WoodStock – Veneer and lumber of valuable wood species] Avaliable at: https://www.woodstock.su/products/iroko_iroko_p/ (accessed 25.09.2022).

[9] WOODSTOCK. Ekspert po derevu. Pilomaterialy Merbau 2006–2022 WoodStock — Shpon i pilomaterialy tsennykh porod [WOODSTOCK. Wood Expert. Merbau Lumber // 2006–2022 WoodStock — Veneer and lumber of valuable wood species] Avaliable at: https://www.woodstock.su/products/merbau_merbau_p (accessed 25.09.2022).

[10] WOODSTOCK. Ekspert po derevu. Pilomaterialy Venge // 2006–2022 WoodStock — Shpon i pilomaterialy tsennykh porod [WOODSTOCK. Wood Expert. Wenge Lumber // 2006–2022 WoodStock — Veneer and lumber of valuable wood species] Avaliable at: https://www.woodstock.su/products/venge_wenge_p/ (accessed 25.09.2022).

[11] Rasev A.I., Kuryshov G.N., Lyashenko S.V. Preryvistye rezhimy sushki pilomaterialov i zagotovok [Intermittent drying of sawnwood and blanks]. Derevoobrabatyvayushchaya promyshlennost’ [Wood industry], 1993, no. 3, pp. 15–16.

[12] Rasev A.I., Kuryshov G.N., Lyashenko S.V. Sposob sushki pilomaterialov [Method of drying]. Pat. no. 2027127 RF. Publ. 20.01.1995. Bull. no. 2.

[13] Rasev A.I., Kuryshov G.N. Tekhnologiya sushki pilomaterialov v aerodinamicheskikh sushil’nykh kamerakh [Technology of drying lumber in aerodynamic drying chambers]. Derevoobrabotka v Rossii [Wood processing in Russian], 1998, no. 1, pp. 3–4.

[14] Kuryshov G.N. Sushka pilomaterialov iz grushi impul’snymi rezhimami [Drying of lumber pear with impulse modes]. Nauchnye trudy MGUL [Scientific works of MSFU], 2003, iss. 319, pp. 20–21.

[15] Kosarin A.A., Kuryshov G.N. Impul’snaya sushka pilomaterialov iz drevesiny ol’khi [Impulse drying of alder lumber]. Nauchnye trudy MGUL [Scientific works of MSFU], 2013, iss. 368, pp. 25–27.

[16] Kuryshov G.N., Kosarin A.A., Raseva E.A. Sposob impul’snoy sushki pilomaterialov [Impulse drying method for lumber]. Pat. no. 2607923 RF. Publ. 11.04.2017. Bull. no. 2.

[17] Kuryshov G.N., Kosarin A.A., Raseva E.A. Sposob impul’snoy sushki pilomaterialov [Impulse drying method for lumber]. Pat. no. 2615854 RF. Publ. 11.04.2017. Bull. no. 11.

[18] Kuryshov G.N., Kosarin A.A., Kosarina A.A. Sposob impul’snoy sushki pilomaterialov [Impulse drying method for lumber]. Pat. no. 2637288 RF. Publ. 01.12.2017. Bull. no. 34.

[19] Kosarin A.A. Tekhnologiya impul’snoy sushki pilomaterialov [Technology of pulsed drying of lumber]. Diss. Cand. Sci. (Tech.), 2012, 22 p.

[20] Sergovskiy P.S., Rasev A.I. Gidrotermicheskaya obrabotka i konservirovanie drevesiny [Hydrothermal treatment and preservation of wood]. Moscow: Lesnaya promyshlennost’, 1987, 360 p.

[21] Rasev A.I. Sushka drevesiny [Drying wood]. St. Petersburg: Lan’, 2010, 416 p.

[22] Kosarin A.A., Kuryshov G.N. Impul’snye rezhimy sushki dlya zagotovok iz drevesiny Iroko [Impulse drying modes for Iroko wood products]. Nauchnye trudy MGUL [Scientific works of MSFU], 2011, iss. 353, pp. 27–28.

[23] Kuryshov G.N., Kosarin A.A. Impul’snaya sushka zagotovok iz drevesiny makhagoni i merbau [Impulse drying of blanks from mahogany and merbau wood]. Nauchnye trudy MGUL [Scientific works of MSFU], 2010, iss. 349, pp. 46–48.

[24] Rukovodyashchie tekhnicheskie materialy po tekhnologii kamernoy sushki pilomaterialov [Guiding technical materials on the technology of chamber drying of sawn timber]. Arkhangelsk: Nauchdrevprom-TsNIIMOD, 2000, 125 p.

[25] Boone R.S., Kozlik C.J., Bois P.J., Wengert E.M. Dry kiln schedules for commercial woods-temperateand tropical. Gen. Tech. Rep. FPL-GTR-57. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 1988, 158 p.

Authors’ information

Deyanov Dmitriy Igorevich — pg. of the BMSTU (Mytishchi branch), d.dejanov@yandex.ru

Kosarin Anatoliy Aleksandrovich — Cand. Sci. (Tech.), Deputy Director of the LTD «Forcklad», kosarin2008@yandex.ru

Moiseev Sergey Andreevich — Master graduand of the BMSTU (Mytishchi branch), employee of Volga JSC, rf-baf2@mail.ru

Kuryshov Grigoriy Nikolaevich — Cand. Sci. (Tech.), kuryshov@mgul.ac.ru